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Summary. Background and aim of the work: Adult stem cells were studied as a source of potentially useful 
development for tissue engineering and repair techniques. The aim of this review is to clarify the actual and 
possible uses of muscle stem cells in orthopedics. Methods: A selection of studies was made to obtain a ho-
mogeneous and up to date overview on the muscle stem cells applications. Results: In recent years muscle was 
studied as a good source of adult stem cells that can differentiate into different cell lineages. Muscle stem cells 
are a heterogeneous population of cells, which demonstrated in vitro a great potential for the regeneration and 
repair of muscle, bone and cartilage tissue. Among muscle stem cells, satellite stem cells are the most known 
progenitor cells: they can differentiate in osteoblasts, adipocytes, chondrocytes and myocytes. Conclusions: Al-
though muscle stem cells are a promising field of research, more pre-clinical studies in animal models are still 
needed to determine the safety and efficiency of the transplant procedures in humans. (www.actabiomedica.it)
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Introduction

Stem cells can be adult stem cells or embryonic 
stem cells. They can be totipotent (cells capable of be-
coming an entire organism), pluripotent (cells capable 
of generating the three germ layers) and multipotent 
(cells of a specific germ layer becoming organ-specific 
progenitors). The adult stem cells have two characteris-
tics: self-renewal and multi-lineage differentiation (1). 
Stem cells give tissues and organs the possibility to de-
velop and regenerate. Biochemical and bio-mechanical 
signals regulate proliferation and differentiation of stem 
cells, typical of early development and tissue regen-
eration (2). There is considerable heterogeneity in the 
classification of Muscle Stem Cells (MSCs). The In-
ternational Society of Cell and Gene Therapy (ISCT) 
system is still the current classifying system for MSCs 
(3). After birth, muscle regeneration is mediated most-
ly by Satellite Cells (SCs): these cells are flattened cells, 
located between the sarcolemma and the basal lamina 

of myofibers (4). They represent a heterogeneous popu-
lation of self-renewable stem cells. They are quiescent 
in vivo, but they can be activated by increased mus-
cle work such as after-load-induced hypertrophy, pro-
longed exercise, and in some pathological conditions 
such as myotraumas. When activated, SCs proliferate, 
migrate from the myofibers, and express specific myo-
genic markers, thus becoming muscle precursor cells 
(MPCs). Recent studies on Muscle Stem Cells (MSC) 
highlighted their possible use in repair of muscles and 
regeneration of tissues like bone and cartilage. MSCs 
can be separated in 2 subtypes CD45+ and CD45-. 
The first ones, if isolated by the muscle, have a limited 
myogenic potential but a high hematopoietic potential. 
The CD45- cells have a high myogenic potential and a 
low hematopoietic potential (5-7). Environmental sig-
nals like Wingless/Integrated 8 (Wnt8) can modify the 
differentiation potential of the MSCs (8).

MSCs demonstrated good transplantation behav-
ior in animal models and resistance to in vitro manipu-
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lation, becoming in this way very useful in the repair 
and regeneration of musculoskeletal tissues (9).

The aim of this review is to investigate the actual 
and possible use of muscle stem cells in musculoskel-
etal diseases.

MSCs and factors that regulate stem cell 
self-renewal and differentiation

MSCs are related with endothelial cells of the 
capillaries or with pericytes; some myogenic-endothe-
lial progenitor cells are in fact CD34+ and CD45- 
(10). These cells can differentiate in vascular endothe-
lial cells or musculoskeletal cells (11). Some studies 
demonstrated that MSCs are associated with vascular 
structures, particularly with the myofibers surrounding 
capillaries (6, 12). The hypothesis is that repair of the 
local skeletal muscle is made by resident stem cells (8). 
MDSCs cell cycle is modified and enhanced in vitro 
by growth factors: insulin-like growth factor-1 (IGF-
1), epithelial growth factor (EGF), stem cell factor 
(SCF) and fibroblast growth factor-2 (FGF-2) (13). 

Harvesting technique

One of the major limitations in the use of satel-
lite cells is the low number of extracted cells due to 
the small size of biopsies and the difficult separation 
from other cellular components, it is still a challenge 
to obtain enough muscle stem cells in vitro. The first 
effort to obtain a method for dissociating mammalian 
muscle into intact, living single fibers was introduced 
by Bekoff and Betz in 1977 (14). Afterwards, Bischoff 
modified the Bekoff and Betz method to permit the 
study of SC proliferation on rat flexor digitorum brevis 
muscle fibers in vitro (15). Rosenblatt et al. (16) pro-
posed a method for isolating myogenic cells based on 
the previous method described by Bischoff (15). This 
allows isolation of SCs from single muscle fibers. Cells 
can easily be removed from culture and analyzed. In 
this way, differences in myogenic cell behavior can be 
detected with greater sensitivity and reliability, both 
within and between muscles (16). Muscle stem cells 
can be obtained with two different approaches: single 
fiber isolation and whole muscle enzymatic digestion. 
There are different protocols to obtain these cells. An 

efficient protocol to isolate and expand in culture hu-
man muscle precursor cells from different skeletal 
muscles was described by Franzin et al. (17).

Muscle regeneration and repair

Muscle injuries usually imply a mechanism of 
shearing, with torn connective tissue and myofibers, 
or a punctiform damage. In this case only the my-
ofibers are damaged while connective tissue does not 
present damage. Immediately after the trauma there 
is hematoma formation, muscle degeneration, necrosis 
and infiltration of inflammatory cells (18). After this 
phase there is a reparative phase, with phagocytosis of 
necrotic or damaged tissue, muscle fiber regeneration, 
formation of scar tissue and neovascularization (19). 
In the following remodeling phase there is muscle re-
generation and reorganization of scar tissue. The MD-
SCs (CD45+) are involved in muscle regeneration (7). 
MDSCs can differentiate in myofibroblast-like cells 
in vitro and so can contribute to scar formation after 
muscle injury in vivo, mainly if stimulated with Tumor 
Growth Factor β-1 (TGF- beta1) (20, 21). The activa-
tion of SCs induces fibroblasts to produce extracellular 
matrix and proliferate (22). This extracellular matrix 
production in some traumas can lead to excessive scar 
formation with insufficient muscle regeneration (21). 
In these cases, some studies demonstrated that some 
signals can prevent formation of an over-fibrotic scar 
(gamma interferon, decorin) and others (IGF-1) can 
improve muscle healing (23-25). In any case, MSC 
transplantation techniques still have bad results (26). 
Recent studies highlighted that only a small part of 
the satellite cells are true muscle stem cells. This sub-
population proliferates slower than the main one (27, 
28), but it is in charge of the long-term survival of im-
planted cells (29). Rossi et al. demonstrated how hy-
drogel technology can be applied to skeletal muscle for 
the reconstruction of damaged muscles, designing the 
delivery of either stem cells or muscle progenitor cells 
(30).

Bone healing

Fracture repair involves: acute response to dam-
age, intra-membraneous bone formation, endochon-
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dral bone formation, cartilage formation and bone 
remodeling (18). Different techniques were studied to 
repair bone defects, in particular biologically enhanced 
allografts, gene- or cell-based tissue engineering (31, 
32). MSCs can be induced to have osteogenic differ-
entiation and can heal bone defects in animals (18). 
A subpopulation of MSCs in skeletal muscle can be 
induced by osteogenic proteins. It was shown that 
murine MDSCs genetically modified to express bone 
morphogenetic protein- 2 (BMP-2) and BMP-4, a 
group of proteins of the TGF family with a pivotal role 
in bone remodeling, can differentiate into an osteo-
genic lineage, determining, in these studies, bone heal-
ing in long bones in mice models (33-38). Moreover, 
vascular endothelial growth factor (VEGF) modulates 
bone formation, improving bone healing after im-
plantation of MDSCs with expression of BMP2 and 
BMP4 in animal models (39, 40). There are ongoing 
Clinical Trials on humans.

Articular cartilage repair

Cartilage is known to have poor healing capacity. 
Adult articular cartilage has no vascularization or in-
nervation, and defects with a diameter larger than 2-4 
mm usually do not heal (41, 42). Nowadays, the main 
operative treatments of articular cartilage defects are: 
total joint replacement, transplantation and articular 
surface debridement. The tissue repaired with trans-
plantation does not integrate and degenerate over time 
(43).

Cartilage repair via chondrocyte transplantation

There are different articular cartilage repair tech-
niques, all of them with unproven long-term efficacy 
in animal models (44, 45). Investigated procedures 
are: transplantation of cartilage plugs (46), autologous 
chondrocytes transplantation (44), allogenic chon-
drocytes transplantation (47) and fetal chondrocytes 
transplantation (48, 49).

Muscle-derived cells for cartilage repair

A satisfactory result was obtained in cartilage 
healing using muscle-derived stem cells. MSCs showed 

if transplanted in cartilage articular defects artificially 
created in rabbits a result comparable to chondrocytes 
transplantation (50), with the production of type-II 
collagen (51).

Other future promising techniques for cartilage repair

Furthermore, genetic engineering can have an im-
portant role in regenerative medicine. An adenoviral 
vector (with IGF-1 expression) was used to transduce 
and enhance equine mesenchymal stem cells (53). 
Cells so enhanced secreted IGF-1 stimulating chang-
es in cartilage matrix gene expression (54), inducing 
cartilage healing. Other growth factors can stimulate 
stem cells proliferation, migration and differentiation: 
BMPs bone morphogenetic proteins (BMP), Trans-
forming growth factor (TGF)-beta1, beta2 and beta3 
and fibroblast growth factors (54). A better under-
standing of these factors could lead to a combined use 
of stem cells and growth factor in articular defects.

Conclusions

There are still many obstacles in the use of MSCs 
in regenerative medicine. Their transplantation as clin-
ical therapy is far from being efficient (55). Some clini-
cal studies reported the use of MSCs to treat patholo-
gies like rotator cuff tears (56) and articular cartilage 
damage (57). Other fields of application were clinical 
trials on human cardiac disease, stress incontinence 
of the bladder and muscular dystrophies (58). The 
biological properties and effects of MSCs in vivo on 
musculoskeletal tissue healing remains overall not sat-
isfactory. An obstacle to the success of myogenic stem 
cell therapy in humans is to obtain a sufficient num-
ber of freshly isolated satellite cells (59). Basic science 
studies and preclinical works are needed before the use 
in clinical practice in orthopedics of these techniques 
with an acceptable level of efficiency and safety. Recent 
research is focused on the clinical use of reconstruc-
tive techniques to obtain repair of tissue loss in murine 
models (60). The increasing knowledge of molecular 
mechanisms at the basis of the activation, differentia-
tion, and phenotypic switch of the MSCs is the first 
step towards the comprehension of their role in mus-
cular pathologies. The promising combination of adult 
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stem cell use, gene therapy techniques and tissue engi-
neering will obtain new and effective therapies for the 
healing of tissues with low regenerative capacity. 
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