Infants breastfed: a require or a potential risk

Mansoreh Taghizadeh, Parvaneh Afsar, Golnoush Madani, Fatemeh Mohammad Hasani, Mehri Khooshbali, Daniel Zamanfar, Hamed Rouhanizadeh, Lale Vahedi Larijani

1Food Security Research Center and Department of Food Science & Technology, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran, Food Quality Control Laboratory, Mazandaran University of Medical Sciences, Sari, Iran; 2Research and Development Unit of Referral Laboratory, Deputy of Health Management, Mazandaran University of Medical Sciences, Sari, Iran - E-mail: afshar164@yahoo.com; 3Food Security Research Center and Department of Food Science & Technology, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; 4Department of Biostatistics & Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran; 5Department Pediatrics, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; 6Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Summary. The Ochratoxin A (OTA) is a nephrotoxic and carcinogenic mycotoxin which generates important risks for human health worldwide owing to food contamination merchandise, environment. Dietary contaminants ingested by nursing mothers can be found in their breast milk. Nevertheless, the rate of OTA lactation transfer has not been investigated so far at various stages of breastfeeding. The study aimed at assessing the presence and values of the mycotoxin Ochratoxin A in human milk in Isfahan, Iran, and sought to evaluate the potential risk for the newborn babies based on the mycotoxin taking. 41 lactating women were randomly selected and breast milk samples after delivery were taken to determine the prevalence of Ochratoxin A value by enzyme linked immunosorbent assay and high performance liquid chromatography technique. Considering the total samples analyzed, only one case was contaminated with Ochratoxin A at 45 ng/l. Accordingly, the results indicated the exposure of mothers and neonates to Ochratoxin A and although the observed incidence was low, it is recommended that further investigations be conducted on mycotoxin contamination in large quantity both in food and biological fluids in addition to protection strategies to decrease the risk in Isfahan and other parts of the country.

Key words: mycotoxin, risk assessment, breast milk, infant foods

Introduction

Breast milk is considered as the best source of nutrients for infants, providing a unique blend of nutritional and non-nutritional benefits (1) but, there is the mycotoxins entrance through utilization of the contaminated foods with molds and their metabolites (2). Ochratoxin A (3), a mycotoxin produced by some species of the genera Aspergillus and Penicillium, established fact for the widespread occurrence in food commodities and it is found in cereals, legumes, coffee, peanuts, meat transport from feed and other plant substrate (4-6). Other foodstuffs may also be contaminated such as cows and human's milk (7, 8). The foodstuffs contaminated by OTA represents an essential supply of exposure for the whole population (9). OTA has been demonstrated to possess many toxic effects on animals and human. The most crucial points are nephrotoxicity, immunotoxicity, and carcinogenicity which classified OTA as a possible human carcinogen.

This compound has been shown to have nephrotoxic effects on all mammalian species and has been related to fatal human kidney disease, referred to as Balkan Endemic Nephropathy and by having an increased incidence of tumors of the top of urinary effect (15).

OTA might also be detected in animal derived products, human blood, breast milk and infant formulae. The European Union (EU) has set a legal limit of 0.50 μg kg⁻¹ for OTA in processed cereal-based foods and baby foods for infants and young children (16).

Prescire’s blood and/or urine OTA were analyzed as biomarkers of exposure. In this context, it is essential to take into account the kinetics, namely the long half-life of OTA in human blood (17). The prevailing database for OTA blood and urine levels in the adult population of different countries shows notable geographical, regional, and inter-individual variability in OTA intake (18-21). Human milk which is considered as a potential supply of Ochratoxin A documented by its detection in samples was collected in several countries (21-25) reflecting a variable dietary mycotoxin exposure of nursing mothers in numerous countries.

A young child may be more sensitive than adults to harmful environmental chemicals as a result of differences in absorption, distribution, excretion, and metabolism (26, 27).

The OTA intake of nursing mothers will largely determine the exposure of the breastfed infants. Although it is known that OTA may be excreted in milk, empirical data on the extent of mycotoxin transfer from blood to breast milk are scarce and contradictory (22). Lactation transfer of xenobiotic is a complicated process (28), and it can vary greatly with breastfeeding stage and with the nutritional status of the mother (29, 30). OTA was found more regularly in milk samples from individuals with a higher intake of liver paste and cakes, bread, bakery products and cured pork meat and the risk of OTA contamination was also increased by the intake of juices (31, 32). Therefore, this indicates an effective transfer of the toxin to the sucking. If the same trend is true in humans, the exposure of the breastfed infant to the toxin might be a major matter of concern for human health (33).

The purpose of the present survey was to determine a level of OTA exposure of breastfed infants and characterize the lactation transfer of mycotoxin. Consequently, there is actually a probable correlation between this mycotoxin values (in positive samples) and potential factors such as the kind of job, dietary pattern and personal habits which were evaluated.

Material and methods

Sample collection

In a period of 3-month of 2015, 41 breast milk samples were collected from lactating women with newborn aged less than 7 months accidentally in Navab Safavi health center, Isfahan, Iran. After making the necessary arrangements, the mothers were referred to the health centers in the morning and were informed about the research objectives. Written informed consents were signed by participants and Information on personal characteristics, dietary habits, were obtained by interview and were recorded. About 5 to 10 mL of breast milk sample was collected in the sterile bottles. The samples were kept at 4°C were kept frozen at under -20°C in Research Laboratory of School of Food Security Research Center, Isfahan University of Medical Sciences until measurement processes.

Exclusion criteria for the subjects were infections or metabolic disease; diseases of the breast or central nervous system, malnutrition, maternal allergy, alcohol, and addiction. The mothers’ age was between 18 to 35 years. Other exclusion criteria were newborns with any malformation, cardiac or hemolytic disease. The diseases were diagnosed by history, physical examination, etc. This study was approved by the local ethics committee of the Isfahan University of Medical Science, and informed consent was obtained from each patient participant prior to enrolment.

Based on data collected by the dietary questionnaire, we classified the subjects according to the frequency of consumption into moderate consumers group (up to 7 times a week) and habitual consumers group (more than 7 times a week) (24, 34).

Extraction procedure

Before starting the experiments, the samples were thawed. Ochratoxin A is a water soluble toxin who used for determined in breast milks the quantitative
test, in the beginning with enzyme-linked immuno-
sorbent assay (19) method for the screening test, then
the all positive samples with HPLC method.

ELISA test procedures were performed according
to the manufacturer’s instruction of the test kit
(Helica Company, Santa Ana, California, USA).

Analysis OTA in human breast milk samples by
ELISA and HPLC technique

According to the kit procedure, 1 ml of breast
milk drawn in a polypropylene tube. Then 5 ml di-
chloromethane (CH2Cl2) were added and mixed head
overhead 5-10 minutes (Rotor) was allowed the mix-
ture to separate into two layers for 10 minutes. After-
ward was removed the upper layer and take 1 ml vol-
ume of the layer underneath. This final sample volume
aporates to dryness under a mild stream of nitrogen at
50ºC, was solved the residue in 0.2 ml dilution buffer
(supplied in the kit) then pipette 50 µl into the wells of
the ELISA plate. The standard solutions and the breast
milk samples were added to the wells, and washed after
each incubation session. The optical absorption of the
samples was measured through the photometric meth-
method using ELISA reader at the wavelength of 450 nm.
Afterward the calibration curve was drawn and used in
order to determine the OTA concentration considering
the samples’ absorption rat. To ensure the accu-
cracy of the whole process, all positive samples were re-
peated once again. ELISA standard curve values were
obtained with a blank and 6 Standards concentration
0.025, 0.05, 0.1, 0.2, 0.5 and 2 ng/ml, in duplicated
style. Acceptable range (OD) were >1.609 for lowest
and <0.314 for highest standard concentration. The
limit of detection (LOD) was 0.25 ng/ml.

In this survey used Waters HPLC system (Waters
2690, USA) equipped with a fluorescence detector 474
and an auto sampler; excitation and emission wave-
lengths were 365 and 430 nm, respectively. The HPLC
column and guard were Capital HPLC 150×4.6 mm,
3mm, 3mm (Capital HPLC Ltd) and 0.5 cm chromo-
lith, respectively. The mobile phase prepared by metha-
nol, acetonitrile, water (3:2:6, v/v/v), KBr (0.12 g) and
HNO3 4 N (0.35 ml), in isocratic mode with a flow
rate of 2 ml/min. The temperature in column oven was
40 C. Nine Ochratoxin A standards of between 0.5
and 15 ng/ml and 0.1 e 10 ng/ml were obtained from
Sigma Aldrich (St. Louis, MO, USA) and injected,
respectively.

Statistical analysis

Statistical analysis was performed by the SPSS
version 18 software by student t-test for comparison of
OTA concentrations in breast milk samples. Also, var-
iable inter groups comparison was analyzed by means
of non-parametric test Manne Whitney. P <0.05 were
considered significant.

Results

The age ranges of 41 volunteers were 18-35 years
(mean 27.5 years). 61% of the mothers’ delivery modes
were vaginal and 39% were cesarean. 19 cases (46.3%)
of these mothers lived in rural areas and 22 cases in
cities. 21 cases of infants were female and 19 cases
(48.8%) were male. 53.7% and 46.3% of infants’ age
were below 3 months and above 3 months, respectively.

Table 1 presented the Specification data of statis-
tical population (41 mothers and their infants).

Totally Ochratoxin A was detected in 8 samples
(19.5%) of 41 human breast milk by ELISA meth-
method (as the primary screening test) ranging from <5
to 0.258 ng/l. whereas estimating this mycotoxin by
HPLC method were shown only in one breast milk
sample (2.4%) with 45 ng/l.

As a result, differences were observed in Ochra-
toxin A in the samples which were evaluated via the
ELISA and HPLC methods (Table 2).

No differences were observed between potential
factors of the job, dietary pattern and personal hab-
its with Ochratoxin A values (in positive and negative
samples).

Discussion

Mothers in lactation period are exposed to dif-
ferent naturally occurring and/or synthetic contami-
nants, and nearly all nutrients are also polluted with
these kinds of contaminants in different degrees. In
different systems, the determination of their levels in
biological fluids, for example, breast milk, is important
when considering the vulnerability of infants (34). The study confirms the presence of Ochratoxin A in human milk and it gives an update on the actual situation in Isfahan (Central Iran). In the present study, although 8 (%19.5) out of the 41 breast milk samples were screened by ELISA method, just contamination in one case (2.4%) with 45 ng/l level was confirmed via HPLC method.

The toxin concentration measurement varied widely in different studies reported by different scale

Table 1. Specification data of statistical population (mothers and their infants)

<table>
<thead>
<tr>
<th>Maternal age (years)</th>
<th>Mode of delivery</th>
<th>Gender of infants</th>
<th>Area</th>
<th>Baby age below 3-month</th>
<th>Baby age above 3-month</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-35</td>
<td>25</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>61%</td>
<td>39%</td>
<td>48%</td>
<td>53.7%</td>
<td>46.3%</td>
</tr>
<tr>
<td>Total 41 case</td>
<td>26.5</td>
<td>50%</td>
<td>75%</td>
<td>62.5%</td>
<td>50%</td>
</tr>
<tr>
<td>Positive (8 case by ELISA method)</td>
<td>21-32</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Positive (1 case by HPLC method)</td>
<td>27b</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

*Indicates mothers age range. Indicates mothers age mean. Indicates sample count. Indicates sample percentage

Table 2. Determination of Ochratoxin A in 41 human breast milk specimens by ELISA and HPLC methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Positive samples (%)a</th>
<th><5b (%)a</th>
<th>≥5-10 b (%)a</th>
<th>≥10-50b (%)a</th>
<th><50b (%)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>8(19.5%)</td>
<td>33(80.5%)</td>
<td>5(12.2%)</td>
<td>2(4.9%)</td>
<td>1(204%)</td>
</tr>
<tr>
<td>HPLC</td>
<td>1(2.4%)</td>
<td></td>
<td></td>
<td></td>
<td>1(2.4%)</td>
</tr>
</tbody>
</table>

*Indicates percentage of total samples. ‘ng/l’

Figure 1. Ochratoxin A chromatogram of a naturally contaminated human milk sample by HPLC technique
levels ng/ml which in our study it was converted to ng/l.

Present results are comparable with those obtained in other similar studies performed in recent years in various Asian and non-Asian countries. In our survey, the total quantity samples were 41 cases which match the studies with 40-50 samples conducted in Italy (35), France (36), Brazil (37) and Chile (25). Although the number of the samples was fewer than the reported studies by El Sayed et al in Egypt with 120 samples (38), Andrade et al in Brazil with 224 cases (39), a study in Sweden with 92 cases (8), Sierra Leone with 113 cases (40) and Italy with 231 cases (41), it was higher than the countries like Egypt (42), Italy (43) and Poland (44) with 10, 31 and 13 samples, respectively.

One case with OTA positive level (2.4%) determined in our study was consistent with a study in Iran with 2 (2.74%) (24) and a study in Brazil with 2(4%) (37) but less than the study in Chile with 11(100%) (45) and in Brazil with 66(66%) (46), Hungary with 22(20%) (47), Sweden with 38(41%) (8) and was higher than that study reported by Andrade et al., in Brazil(39) who did not determine any OTA level.

According to the European Union Standard, 14 (16%) positive samples revealed more than the maximum limit of 40 ng/l for Ochratoxin (ranging from 1.6 to 60 ng/l) (48).

The frequent presence of measurable OTA levels in nursing Iranian women documents their dietary mycotoxin exposure. The average OTA concentration in this cross sectional study during the 3 month study period was 45 ng/l compared with toxin levels of human breast milk reported in Egypt with 5.07-45.01 ng/l (38), Italy (35), Switzerland (49), Italy (41), Slovakia (50) and Italy (51) with values of 10-40 ng/l, 10-130 ng/l, 1-57 ng/l, 2.3-60.3 ng/l and 1.7 to 75 ng/l, respectively, and it corresponds to Norway (52) with 10-182 ng/l. Furthermore, our results were less than the results of the studies in Turkey (34), Miraglia, Marina, et al., in Italy (43), in Sweden (8), Brazil (37) and Iran (24) with values of 620.87-13111.3 ng/l, 0.08-0.54 ng/ml, 0.22-7.63 ng/l, 0.011-0.0024 ng/ml and 90&140 ng/l, respectively, but were more than the results of the studies in Poland (53) with 0.00053-0.017 and Brazil (46) with 0.3-21 ng/l. In all aforementioned survey used HPLC techniques.

While the study in Khorrambid, Fars Province, Southern of Iran (54) and Norway (55) confirmed with ELISA techniques matched with the results of the screening section of the present study. Although OTA level results determined in Iran ranged from 1.6 to 60 ng/l in 87 human milk samples with 96.6% positive samples (24) but in Norway, it ranged from 22 to 26.4 ng/l in 78 sample with 51% positive cases (55). But from 8 positive cases of the primary screening test with ELISA method, only one case was confirmed by HPLC technique corresponding to the survey in Sari, Mazandaran Province, Northeast of Iran (24). Therefore, despite the acceptable sensitivity of ELISA technique, it is recommended that all positive samples in this method must be confirmed by HPLC technique.

Conclusion

Comprehensive programs should be developed in order to regularly investigate and control these toxins in both humans’ and animals’ food chains so that the amount of these toxins can be reduced and their side effects can be prevented. Moreover, conducting further studies on a lot of human milk samples in Isfahan and other parts of Iran are recommended in order to identify the status of the society members’ exposure to these toxins. Monitoring foods for the presence of mycotoxins like OTA and the disposal of contaminated products should decrease the risk to the human and animal health. Therefore, regular monitoring of foods for the presence of mycotoxins for lactating mothers seems necessary.

Acknowledgments

The authors appreciate of Dr. Faridfar and Navab-Safavi Health Centre associates and also grateful for the mothers who kindly participated.

Funding

This study approved by School of Food Security Research Center, Isfahan University of Medical Sciences (Code 394066).
References

4. Miraglia M, Brera C. Assessment of dietary intake of ochratoxin A by the population of EU member states. Reports on tasks for scientific cooperation Reports of experts participating in SCOOP Task 2002; 3(7).

Ochratoxin A in human breast milk in Iran

Correspondence:
Parvaneh Afshar
Research and Development Unit of Referral Laboratory,
Deputy of Health Management,
Mazandaran University of Medical Sciences, Sari, Iran
E-mail: afshar164@yahoo.com, p.afshar@mazums.ac.ir