
Introduction

Flame retardants are used in a variety of industri-
al and consumer products and have contributed in the
past few decades to a reduction in the incidence of
fires. Among fire retardants, several are brominated
compounds, such as tetrabromobisphenyl A (TBBPA),
hexabromocyclododecane, and polybrominated diphenyl
ethers (PBDEs) (1). PBDEs are chemically similar to
the long banned polychlorinated biphenyls (PCBs);
there are 209 possible types of PBDE congeners, num-
bered using the same system as the PCBs. PBDEs
have been marketed as one of three mixtures, known as
pentabrominated BDE, octabrominated BDE, and de-
cabrominated BDE. DecaBDE is the most widely
used PBDE globally, and is still produced in the USA
and in Europe, while pentaBDE and octaBDE have
been recently banned in the European Union and in
several states in the USA, and are no longer produced
in these countries (2).

In contrast to TBBPA, which is chemically bond-
ed into the polymer product, PBDEs are “additive”
flame retardants, i.e. they are simply blended with the
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Figure 1. General chemical structure of PBDEs (x + y = 1-10)
and chemical names of major PBDE congeners mentioned in
the text

BDE-47: 2,2’,4,4’-tetrabromodiphenyl ether
BDE-99: 2,2’4,4’,5-pentabromodiphenyl ether
BDE-100: 2,2’,4,4’,6-pentabromodiphenyl ether
BDE-153: 2,2’,4,4’,5,5’-hexabromodiphenyl ether
BDE-154: 2,2’,4,4’,5,6’-hexabromodiphenyl ether
BDE-209: Decabromodiphenyl ether
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polymers, and are thus more likely to leach out of the
product into the environment. Like PCBs in the past,
in the last twenty years, PBDEs have become ubiqui-
tous persistent organic pollutants; they bioaccumulate
in the environment, biomagnify up the food chain,
and have been detected in significant amounts in ani-
mals as well as humans (3-5). This brief review will
discuss current knowledge on environmental contam-
ination by PBDEs, body burden in humans, and par-
ticularly in children, and potential adverse health ef-
fects, as evidenced so far by animal studies.

PBDEs: environmental contamination

A large number of studies have established the al-
most ubiquitous presence of PBDEs in the environ-
ment, in animals and humans. PBDEs have been de-
tected in outdoor air, sediments, sludge, soil; in indoor
air and house dust; in several food commodities; and
in birds, marine species, fish and terrestrial animals (4,
6-12). PBDEs have also been detected in human adi-
pose tissue, serum and breast milk (13-16). In contrast
to PCBs and other chlorinated compounds, whose
levels in biota and in human tissues have been de-
creasing over the past three decades, levels of PBDEs
have significantly increased (13, 14, 16, 17). Five
tetra-, penta- and hexa-BDE congeners (BDE-47,
-99, -100, -153, -154) predominate in biota and in
human tissues. Still widely used decaBDE (BDE-
209) is also found in the environment (4, 12), where it
can be broken down to the lower brominated con-
geners commonly found in humans (18, 19). BDE-
209 has also been detected in certain foods, in breast
milk, and in the placenta (15, 20, 21) and debromina-
tion of BDE-209 to lower brominated congeners has
been observed in rats (22).

Sources of exposure and body burden in humans

PBDEs have been detected in human serum and
adipose tissue in individuals from all around the world.
In Europe and Asia levels are usually below 5 ng/g
lipid, while those in North America have been found to
be as high as 200 ng/g lipid (9, 15, 23). Levels of PB-
DEs found in human tissues in North America are thus
particularly alarming, as they are one to two orders of

magnitude higher than those reported in Europe and
Japan (13, 24, 25). PBDEs can also cross the placenta,
and similar concentrations are found in maternal and
fetal blood (26-28). Levels of PBDEs ranging from 4 to
98.5 ng/g lipid have also been found in fetal liver (29).
In almost all cases, BDE-47, BDE-99 and BDE-153
are among the PBDEs found in highest amounts.

Main sources of PBDE exposure are the diet and
the indoor environment, though occupational expo-
sure has also been documented. Among foods, fish,
meats, and dairy products contain the highest concen-
trations of PBDEs (Table 1). In the U.S., fish has the
highest content of PBDEs, followed by meat and
dairy products; however, given the food consumption
patterns in this country, meat is estimated to be the
major source of PBDEs from the diet (9, 20, 30-32).
In other world regions, such as in Europe, fish is a ma-
jor source of dietary exposure to PBDEs. Independent
of the specific food source, exposure to PBDEs
through the diet is only slightly higher in the U.S. (60-
84 ng/day), than in Europe (38-97 ng/day), (20, 31).
Thus, diet alone cannot fully explain the higher levels
of PBDEs found in human tissues of children and
adults in North America (23, 31, 33).

In case of infants, diet is the major determinant
of exposure. Significant levels of PBDEs have indeed
been found in human breast milk, particularly in
North America (Table 2). For example, mean levels of
PBDEs (all congeners) in human milk in 2002-05
were (in ng/g of lipid): 3.7 in Europe, 1.57 in Japan,

Table 1. PBDEs in selected foods

Foodstuff Spain United States

Oil 15-2958 ND
Eggs 13-557 85
Milk 3-166 8-290
Butter 74-1588 485
Cheese 15-137 11-683
Chicken 16-1501 129-283
Pork 7-2518 41-1378
Beef ND 105-258
Ham 15-1009 ND
Salmon 77-880 141-3082
Fatty fish 211 437-2450
Sardines, tuna 24-511 16-3276 
Shellfish 3-677 108

Data are expressed in pg/g. Adapted from Gomara et al. (20)
and Schecter et al. (31)



174 L.G.Costa, G. Giordano, S. Tagliaferri, A. Caglieri, A. Mutti

and 73.9 (range 6.2-419) in the USA (16, 24, 25).
Levels of PBDEs in breast milk have been increasing
in the past 20-30 years, along with serum levels in the
general population (2, 17), though a slight decline has
started to emerge in the recent years. Given the high
levels present in milk, it has been estimated that a
breastfed infant in the U.S. would be exposed to 1500
ng/day of PBDEs (31).

Several studies have indicated that a major source
of exposure to PBDEs is represented by house dust
(34-38). Household cats, exposed to PBDEs partially
through the diet and through house dust, have been
found to have serum levels of PBDEs that were 20-
100 fold higher than the mean levels in U.S. adults,

and have been suggested to serve as “sentinels” for in-
door exposure to PBDEs (39). For toddlers in partic-
ular, dust has been estimated to account for 80% of
PBDE exposure (37). A recent study by Allen et al.
(40) also indicated that children are exposed to PBDE
levels 3-4 -fold higher than adults, and that house
dust accounts for >80% of exposure (Table 3). In a
study of a Californian family, serum levels of PBDEs
were reported to be 651 ng/g lipid in a 1.5 year old
toddler vs 87 ng/g lipid in the father (33). Thus, in
contrast to PCBs, whose concentration increases with
age due to accumulation in adipose tissue, PBDE lev-
els do no appear to increase with age (17). Moreover,
the highest serum levels of PBDEs are found in in-
fants and toddlers, as a result of exposure through ma-
ternal milk and house dust (33).

As said, occupational exposure to PBDEs may al-
so occur. For example, in a group of computer dis-
mantlers in Sweden, serum levels of PBDEs were 26
ng/g lipid, compared to 3.3 ng/g lipid in a reference
group of hospital cleaners (41). In a more recent study
in China, workers at an electronic dismantling facility
were found to have mean serum levels of BDE-209 of
83.5 ng/g lipid (with a peak of 3436 ng/g lipid), com-
pared to 5.7 ng/g lipid in a reference group. Residents
within a 50 km radius from the dismantling facility
showed also relatively high serum BDE-209 levels
(18.5 ng/g lipid) (42). In a group of adolescents work-
ing and living at a waste disposal site in Managua,
Nicaragua, serum levels of PBDEs (mostly BDE-47)
as high as 1250 pmol/g lipid were reported (43).

General toxicology of PBDEs

There is an acceptable body of information on
the general toxicology of PBDEs, particularly de-

Table 2. PBDEs in human milk

World region PBDE levels (range) Year(s)

Europe
Sweden 0.9-28 1996-2001
Finland 0.9-5.9 1994-1998
Russia 0.5-1.7 2003-2004
Poland 0.8-8.4 2004
Czech Republic 0.3-1.4 2003
France 1.4-11.6 2005
Italy 1.6-4.1 1998-2001
Germany 0.8-24.6 2001-2003

North America
United States 4-419 2001-2004
Canada 0.9-956 2001-2005

Asia
Japan 0.1-291 1999-2004
China 1.5-17 ND
Indonesia 0.5-13 2001-2003

Oceania
Australia 6.1-18.7 2002-2003

Levels of PBDEs are in ng/g lipid. Table adapted from Costa
and Giordano (2), where original references are indicated

Table 3. Relative contribution of major routes of exposure to PBDE intake in the United States

Source Adult Child
Non-209 % of intake BDE-209 % of intake Non-209 % of intake BDE-209 % of intake

BDEs BDEs

Air 5.6 11.0 3.5 22.4 3.2 2.0 2.0 2.9
Food 33.3 65.3 6.5 41.7 24.9 15.7 6.0 8.7
Dust* 12.1 23.7 5.6 35.9 130.5 82.3 60.8 88.4

Total 51.0 100.0 15.6 100.0 158.6 100.0 68.8 100.0

PBDE exposure is expressed in ng/day. Adapted from Allen et al. (40)
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caBDE, but for several emerging end-points of toxic-
ity, information is still limited (6-8, 10, 19, 44-46).
PBDEs have low acute toxicity, with oral LD50s of >5
g/kg. Upon chronic exposure, target organs are the liv-
er, the kidney and the thyroid gland. Different PBDEs
appear to have similar toxicological profiles, with de-
caBDE being less potent than other lower brominat-
ed congeners. For example, in subchronic toxicity
studies in rat, no-observed-effect-levels are usually in
the g/kg/day range for decaBDE, but less than 10
mg/kg/day for pentaBDE (6, 44). Toxicokinetic stud-
ies in adult animals have indicated that absorption,
metabolism and excretion of PBDEs are congener-,
species- and gender-dependent (6, 7, 47). For exam-
ple, lower brominated congeners are metabolized to
mono- and di-hydroxylated metabolites (e.g. 6-OH-
BDE-47), which may have toxicological relevance (see
below), and appear to bioaccumulate in serum (43),
while decaBDE may be metabolized to lower bromi-
nated congeners. Male mice have a higher rate of uri-
nary excretion compared to female mice or rats. Young
animals have a reduced ability to excrete PBDEs,
which contributes to a higher body burden (48).

PBDEs do not appear to be genotoxic (49, 50),
but an increased incidence of hepatocellular carcino-
mas and thyroid adenomas have been observed in ro-
dents upon exposure to BDE-209 (6, 44). PBDEs can
be fetotoxic, but usually at maternally toxic doses, and
there is no evidence of teratogenicity. Despite the
structural similarities to PCBs, PBDEs do not appear
to activate the Ah receptor-AhR nuclear translocator
protein-XRE complex, although they can bind to the
Ah receptor (51-54). However, various PBDEs have
been reported to induce mixed-type monoxygenase in
vivo. For example, DE-71 (a pentaBDE mixture) was
reported to induce CYP1A1 and CYP2B in rats (55),
while BDE-47, -99, and -153 upregulate CYP2B and
CYP3A, also in rat (56). In a recent study in mice,
BDE-47, -99, and -209 were found to induce expres-
sion of CYP3A11 and CYP2B10 by activating the
pregnane X receptor (PXR) (57). PBDEs have also
been shown to induce phase II metabolizing enzymes,
such as uridine diphosphoglucuronosyl transferase
(UDPGT) (58, 59). Inhibition of CYP activity by PB-
DEs has also been reported. For example, several hy-
droxylated PBDEs were found to inhibit CYP19 (aro-

matase), a key enzyme in steroidogenesis, in human
placental microsomes (60).

PBDEs as endocrine disruptors

PBDEs have endocrine disrupting effects, as they
have been shown to interact as antagonists or agonists
at androgen, progesterone, and estrogen receptors (53,
61-63). For example, most PBDEs have antiandro-
genic activity in vitro and in vivo (64); tetra-to hexa-
BDEs have potent estrogenic activity in vitro; hept-
aBDE and 6-OH-BDE-47, a metabolite of BDE-47,
have anti-estrogenic activity (53, 54). Reproductive
toxic effects of PBDEs have been reported. Prenatal
exposure to BDE-99 was found to reduce sperm
counts in adult rats (65), and to alter the ultrastructure
of the ovary cells in the females (66). Similar findings
in the female reproductive system were also seen with
BDE-47 (67), which also caused a decreased in ovar-
ian weight and alterations in folliculogenesis and
serum estradiol concentrations (68), while BDE-209
was reported to impair male rat reproductive functions
(69).

PBDEs have also been reported to decrease levels
of total and free T4 in adult animals (70-72), in ado-
lescent animals (73), and following developmental ex-
posure. Given that thyroid hormones are known to
play a relevant role in brain development (74, 75), and
that hypothyroidism has been associated with a large
number of neuroanatomical and behavioral effects
(76-78), this latter effect has been particularly investi-
gated. Zhou et al. (55) reported that treatment of
weanling female rats with DE-71 or DE-79 (an
octaBDE mixture) caused a reduction of serum T4 lev-
els. In a subsequent study, Zhou et al. (59) found that
exposure of rats to DE-71 from gestational day (GD)
6 to postnatal day (PND) 21 caused a significant de-
crease of serum T4 in the dam, and in the fetuses and
pups on GD 20, PND 4 and PND 14, with a recov-
ery on PND 36. A similar treatment with DE-71 in
rats (GD 6-PND 18) was found to decrease serum T4

levels in dams and in pups on PND 18, with a full re-
covery on PND 31 (79). Postnatal exposure of rats to
BDE-209 was reported to decrease the serum levels of
T4 in male animals on PND 22 (80), while BDE-209
exposure from GD 0-17 was found to decrease T3, but
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not T4 levels on PND 71 (81). A single pre-natal ex-
posure to low doses of BDE-47 or BDE-99 (on GD
6) was found to decrease T4 levels in pups (67, 82).
However, a single exposure or rats to BDE-47 on
PND 10, which resulted in behavioral toxicity (83,
84), did not cause any alterations in serum T4 and T3

levels (85). Possible mechanisms underlying the ef-
fects of PBDEs on thyroid functions relate to an en-
hanced metabolism and excretion of T4 as a result of
exposure to PBDEs, or to an interaction of PBDEs
with the thyroid hormone transport system. Zhou et
al. (59) found that the decrease in T4 was associated
with induction of UDPGT, a key phase II metaboliz-
ing enzyme involved in conjugation of T4. Such in-
creased metabolism results in enhanced excretion and
hence in reduced circulating levels of T4 (86). Howev-
er, induction of UDPGT alone cannot explain the re-
duced T4 levels induced by PBDEs, since decreased
levels of T4 were also seen in the absence of UDPGT
induction (59, 71, 81, 87, 88). An alternative/comple-
mentary hypothesis is that PBDEs may interfere with
thyroid hormone transport. Meerts et al. (89) report-
ed that several PBDEs could interact with
transthyretin (TTR), one of the thyroid hormone-
binding proteins in plasma, thereby displacing T4.
However, such interaction only occurred in the pres-
ence of phenobarbital-treated microsomes, implicat-
ing one or more PBDE metabolites. Some hydroxy-
lated PBDEs, in particular 6-OH-BDE-47, were
most potent in displacing T4 from TTR (53, 54, 89).
Displacement of T4 from TTR may lead to increased
glucuronidation and a consequent lower level of T4.

PBDEs as developmental neurotoxicants

The current greatest concern for potential adverse
health effects of PBDEs relates to their developmen-
tal neurotoxicity (2, 10, 45, 90). Such concern is sup-

ported by the fact that infant and toddlers have the
highest body burden of PBDEs, due to exposure via
maternal milk and house dust (2), and that a number
of animal studies have provided indications of long-
lasting behavioral alterations, particularly in the do-
mains of motor activity and cognitive functions, upon
pre- and postnatal exposures to PBDEs (Table 4). A
series of studies have shown that exposure of neonatal
mice and rats to various PBDEs (BDE -47, -99, -153,
-183, -203, -206, -209) as a single oral dose, in most
cases on PND 10, causes long-lasting changes in
spontaneous behavior, mostly characterized as hyper-
activity (decreased habituation), and disrupts perfor-
mance in learning and memory tests (e.g. Morris wa-
ter maze) (83, 91-96). In some cases, the observed be-
havioral changes appeared to worsen with age (92,
93). Evidence from a number of other studies is over-
all supportive of such findings. Hyperactivity has been
reported following developmental exposure of rats and
mice (various  treatment schedules; see (2)) to BDE-
99, BDE-47 and BDE-209 (65, 80, 84, 97-99). Cog-
nitive impairment has also been reported following
postnatal exposure to DE-71 (100) and to BDE-209
(101). Gender-dependent alterations in sweet prefer-
ence, paralleled by changes in sex hormones have also
been reported upon exposure to BDE-99 (102).

In contrast with the large database on body bur-
den (levels of PBDEs in serum, adipose tissue, breast
milk), there is almost no information on possible de-
velopmental adverse effects in humans from PBDE
exposure. In a study in Taiwan (103), elevated PBDE
levels in breast milk were correlated with lower birth
weight and length, lower head and chest circumfer-
ence, and decreased Quetelet’s (body mass) index. In
another study in Scandinavia, milk PBDE levels were
associated with an increased incidence of cryp-
torchidism in newborn boys (104). Any possible infer-
ence on potential risk for adverse nervous system ef-

Table 4. Developmental neurotoxicity of PBDEs: animal studies

Exposure PBDE Behavioral effects Reference

Pre-natal BDE-47, -99 Hyperactivity 65, 97

Post-natal BDE-47, -99, -153, -183, -203, Hyperactivity, decreased habituation,
-206, -209, DE-71 impaired learning 80, 83, 84, 92-96, 100, 101 

Pre- and post-natal BDE-99 Hyperactivity 98, 99
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fects in humans exposed to PBDEs in utero, or neona-
tally through breast milk or household dust, needs to
be extrapolated from animal data. By using a standard
approach of dividing NOEL values for the appropri-
ate safety factors, Reference doses (RfDs) of 92-660
ng/kg/day can be calculated (2). These values are in
the actual range of infant exposure in the U.S.
(through breast milk; ~300 ng/kg/day) (31), and close
to the levels of toddler exposure through household
dust and the diet (50 ng/kg/day) (23). Comparison of
body burden across species leads to similar conclu-
sions, i.e. levels in animals shown to cause adverse de-
velopmental behavioral effects are in the same range
of high human exposures (2).

Information on possible mechanisms of PBDE
developmental neurotoxicity is still limited. As recent-
ly indicated (2), two general, and not mutually exclu-
sive, ways of action are emerging: one related to the ef-
fects of PBDEs on thyroid hormones, and the other
one involving the possible direct effects of PBDEs on
the developing brain. Independent of the underlying
mechanisms (see previous section), the effect of PB-
DEs on thyroid hormone homeostasis may be relevant
in the context of developmental neurotoxicity. Behav-
ioral studies in hypothyroidism [induced by develop-
mental exposure to propyl thiouracyl (PTU)] have ev-
idenced decreases in learning and habituation in maze
tests, changes in anxiety-like behavior, and increases in
locomotor activity in rats (105). As indicated above,
some of these effects are seen following developmen-
tal exposure to PBDEs. Furthermore, thyroid hor-
mone deficiency has been found to cause structural
abnormalities in the hippocampus and the cerebellum
(78), and to increase apoptosis in the cerebellum
(106). PTU treatment causes T4 level to fall below the
limit of detection in offspring (105), while decreases
of T4 following developmental exposure to PBDEs are
less pronounced (10-60%). Nevertheless, decrements
in neurological development in children of mothers
with 25% decrease in T4 have been reported (77), sug-
gesting that effects of PBDEs on thyroid hormones
may contribute to their developmental neurotoxicity.

PBDEs may also exert direct neurotoxic effects
in neuronal and glial cells. Few studies have investi-
gated biochemical/molecular changes occurring in the
central nervous system of animals following in vivo

developmental exposure to PBDEs (2). For example,
Eriksson et al. reported changes in cholinergic nico-
tinic receptors in the hippocampus upon exposure to
BDE-99 and -153 (92, 107). The same investigators
found changes in the expression of CaMKII, GAP-43
and BDNF following postnatal exposure to BDE-209
(108), and of GAP-43 and other proteins upon expo-
sure to BDE-99 (109). Similar changes in CaMKII
were also found upon exposure to BDE-47, which al-
so altered the expression of glutamate receptor sub-
units (110). The glutamate-nitric oxide-cGMP path-
way was altered by prenatal exposure to BDE-99
(111). Additional information has been provided by in
vitro studies on neuronal or astroglial cells. Interfer-
ence of PBDEs with signal transduction pathways
have been reported. For example, various PBDEs
were shown to cause translocation of protein kinase C
(PKC), stimulation of arachidonic acid release, and
inhibition of calcium uptake in cerebellar granule
neurons (112-114). Effects of different PBDEs on
calcium buffering mechanisms have also been seen in
microsomes and mitochondria isolated from several
brain regions of adult male rats (115). Activation of
various PKCs by BDE-99 in human astrocytoma
cells, and increases in calcium concentrations in astro-
cytes, macrophages and PC-12 cells, by BDE-99 and
BDE-47 have also been reported (110, 116-118).
BDE-99 has been shown to cause apoptotic cell death
in human astrocytoma cells (116), and a similar effect
has also been observed with DE-71 in cerebellar
granule cells (119), and with BDE-47 in hippocampal
neurons and human neuroblastoma cells (120, 121).
In neuronal cells, PBDE neurotoxicity was prevented
by antioxidants (119) suggesting that PBDEs may in-
duce oxidative stress. Several recent reports, indeed
indicate that PBDEs cause oxidative stress in vitro
(Table 5). DE-71 and BDE-47 were shown to cause
oxidative stress in human neutrophil granulocytes
(122), an effect shared by other brominated fire retar-
dants (123, 124). BDE-47 was reported to induce ox-
idative stress in SH-SY5Y human neuroblastoma
cells (121, 125), in rat hippocampal neurons (120),
and in fetal liver hematopoietic cells (126). Similar re-
sults were obtained in human hepatoma cells (Hep
G2) with BDE-209 (127). An increase in lipid perox-
idation and in the levels of oxidized glutathione
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(GSSG) have also been found in liver of American
kestrels (Falco sparverius) treated in ovo with a mix-
ture of BDE-47, -99, 100, and -153 (128). Further-
more, prenatal exposure to BDE-99 has been shown
to increase levels of nitric oxide, possibly secondarily
to an increase in calmodulin, which may lead to in-
creased nitrosylation of proteins (111). Preliminary
findings in the authors’ laboratory also indicate that
PBDEs cause oxidative stress in mouse cerebellar
granule neurons and hippocampal neurons, and that
their neurotoxicity is modulated by intracellular glu-
tathione (129). In addition to oxidative stress caused
by a direct effect of PBDEs on neuronal cells, it is al-
so relevant that hypothyroidism itself may induce ox-
idative stress, as evidenced by increased hydroxyl rad-
icals, lipid peroxidation and protein carbonyl levels in
PTU-treated rats (130). However, as earlier men-
tioned, a recent study has shown that a single expo-
sure of mice to BDE-47 (10 mg/kg on PND 10; the
same protocol utilized in the Eriksson, Viberg et al.
studies) causes neurobehavioral effects (delayed neu-
romotor ontogeny and long-term hyperactivity),
without altering serum levels of T3 and T4 (84, 85).
These findings would support the hypothesis that
both thyroid hormone-mediated, and direct effects of
PBDEs can occur, depending on the exposure para-
digm. The two general ways of action are not mutual-
ly exclusive.

Conclusions

In the past several years, PBDEs have become
widespread environmental pollutants, and body bur-

den in the general population has been increasing, due
to exposure through the diet and through house dust.
Of particular concern is the high body burden in in-
fants and children and the evidence, provided so far by
animal studies, that PBDEs may be developmental
neurotoxicants and endocrine disruptors. These con-
cerns have led to the ban of several of these com-
pounds in different countries. DecaBDEs have also
been banned in some countries (e.g. Sweden) and in
some states (e.g. Maine, Washington) in the U.S.
Flame retardants in general have greatly contributed
to a decrease in the incidence of fires, thus saving lives,
injuries and property damages. Thus, PBDEs are like-
ly to be replaced by other chemicals, whose potential
adverse effects on the environment and human health
are still unknown. Because of their persistence, PB-
DEs, like the long-banned PCBs, are expected to be
around for quite some time; hence, it would be in the
public interest to acquire more information on PB-
DEs’ potential adverse health effects. Several issues
still remain and need to be investigated (2). Among
these, there is the need for epidemiological studies in
humans to determine whether body burden of PBDEs
may be associated with adverse health effects, particu-
larly in the domains of neurobehavioral development
and reproductive effects. Also, information on poten-
tial mechanisms of PBDE toxicity is still limited.
Mechanistic studies would provide important infor-
mation for a better assessment of the likelihood of
PBDE adverse health effects, would define the toxic-
ity of individual congeners, and would indicate
whether interactions among PBDE congeners and be-
tween PBDEs and other environmental pollutants,
e.g. PCBs (131) may occur.

Table 5. Oxidative stress induced by PBDEs in vitro

PBDE Cell system Reference

BDE-47 Human fetal liver hematopoietic stem cells 126
BDE-47 Mouse cerebellar granule cells Giordano and Costa, unpublished
BDE-47 Human SH-SY5Y neuroblastoma cells 121, 125
BDE-47 Rat hippocampal neurons 120
BDE-47 Rainbow trout RTgill-W1 cells 132
BDE-209 Human hepatoma (Hep G2) cells 127
DE-71 Mouse cerebellar granule cells 129
DE-71 Human neuroblastoma SK-N-MC cells Tagliaferri, Caglieri et al., unpublished
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