The SARS-CoV2 and mitochondria: the impact on cell fate: SARS-CoV2 and mitochondria

The SARS-CoV2 and mitochondria: the impact on cell fate

SARS-CoV2 and mitochondria


  • Eleonora Madeddu School of Pediatrics, University of Cagliari, Italy
  • Barbara Maniga School of Pediatrics, University of Cagliari, Italy
  • Marco Zaffanello University of Verona
  • Vassilios Fanos School of Pediatrics, University of Cagliari, Italy
  • Antonietta Marcialis School of Pediatrics, University of Cagliari, Italy


Coronavirus; endoplasmic reticulum stress; mitochondria; apoptosis; autophagy; mitochondrial fusion; immune system.


Coronavirus infection causes endoplasmic reticulum stress inside the cells, which inhibits protein folding. Prolonged endoplasmic reticulum stress causes an apoptotic process of unfolded protein response-induced cell death. Endoplasmic reticulum stress rapidly induces the activation of mTORC1, responsible for the induction of the IRE1-JNK pathway. IRE1-JNK stands out for its dual nature: pro-apoptotic in the first stage of infection, anti-apoptotic in persistently infected cells. Once penetrated the cells, the virus can deflect the mitochondrial function by implementing both waterfalls pro-apoptotic and anti-apoptotic response. The virus prevents, through Open Reading Frame 9b (ORF-9b) interacting with mitochondria, the response of the type I interferon of the cells affected by the infection and is fundamental for generating an antiviral cellular state. ORF-9b has effects on mitochondrial dynamics, inducing fusion and autophagy and promoting cell survival. The recognition of ORF-9b has made it possible to identify it as a molecular target of some existing potentially effective drugs (Midostaurin and Ruxolitinib). Other drugs, with the same target, are currently being tested. Given the great importance of mitochondria in virus-host interaction, in-depth knowledge of the actors and pathways involved is essential to continue developing new therapeutic strategies against SARS CoV2.

Author Biography

Vassilios Fanos, School of Pediatrics, University of Cagliari, Italy

Department of Surgery, University of Cagliari, Italy

Neonatal Intensive Care Unit, AOU Cagliari, Italy


1. Fung TS, Liu DX. Human Coronavirus: Host-Pathogen Interaction. Annu Rev Microbiol. 2019 Sep 8;73(1):529–57.
2. Masters PS. The Molecular Biology of Coronaviruses. Vol. 65, Advances in Virus Research. Adv Virus Res; 2006. p. 193–292.
3. Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: An overview of the epidemiology, clinical features, diagnosis, treatment and prevention options in children. Vol. 39, Pediatric Infectious Disease Journal. Lippincott Williams and Wilkins; 2020. p. 355–68.
4. Staico MF, Zaffanello M, Di Pietro G, Fanos V, Marcialis MA. The kidney in COVID-19: protagonist or figurant? Panminerva Med [Internet]. 2020 May 20 [cited 2020 Jun 10]; Available from:
5. Gorbalenya AE, Snijder EJ, Spaan WJM. Severe Acute Respiratory Syndrome Coronavirus Phylogeny: toward Consensus. J Virol. 2004 Aug 1;78(15):7863–6.
6. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology [Internet]. 2018 Feb 1 [cited 2020 Apr 25];23(2):130–7. Available from:
7. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, Evaluation and Treatment Coronavirus (COVID-19) [Internet]. StatPearls. StatPearls Publishing; 2020 [cited 2020 Apr 25]. Available from:
8. Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, Chan KH, et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet. 2003 Oct 25;362(9393):1353–8.
9. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Vol. 17, Nature Reviews Microbiology. Nature Publishing Group; 2019. p. 181–92.
10. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N Engl J Med [Internet]. 2012 Nov 8 [cited 2020 Apr 25];367(19):1814–20. Available from:
11. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature [Internet]. 2003 Nov 27 [cited 2020 Apr 25];426(6965):450–4. Available from:
12. Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol. 2013 Jun;48(6):742–8.
13. Zhou P, Yang X Lou, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar 12;579(7798):270–3.
14. Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature [Internet]. 2013 Aug 7 [cited 2020 Apr 25];500(7461):227–31. Available from:
15. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Vol. 7, Military Medical Research. NLM (Medline); 2020. p. 11.
16. Sturman LS, Holmes K V, Behnke J. Isolation of coronavirus envelope glycoproteins and interaction with the viral nucleocapsid. J Virol. 1980;33(1):449–62.
17. Fung TS, Huang M, Liu DX. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res. 2014 Dec 19;194:110–23.
18. Huang IC, Bosch BJ, Li F, Li W, Kyoung HL, Ghiran S, et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006 Feb 10;281(6):3198–203.
19. Yamada Y, Liu XB, Fang SG, Tay FPL, Liu DX. Acquisition of cell-cell fusion activity by amino acid substitutions in spike protein determines the infectivity of a coronavirus in cultured cells. PLoS One. 2009 Jul 2;4(7).
20. Kuo L, Godeke G-J, Raamsman MJB, Masters PS, Rottier PJM. Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier. J Virol. 2000 Feb 1;74(3):1393–406.
21. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use [Internet]. [cited 2020 May 14]. Available from:
22. Sawicki SG, Sawicki DL, Siddell SG. A Contemporary View of Coronavirus Transcription. J Virol. 2007 Jan 1;81(1):20–9.
23. Oostra M, te Lintelo EG, Deijs M, Verheije MH, Rottier PJM, de Haan CAM. Localization and Membrane Topology of Coronavirus Nonstructural Protein 4: Involvement of the Early Secretory Pathway in Replication. J Virol. 2007 Nov 15;81(22):12323–36.
24. Knoops K, Kikkert M, Van Den Worm SHE, Zevenhoven-Dobbe JC, Van Der Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008 Sep;6(9):1957–74.
25. Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJM, van der Meulen J, Koerten HK, et al. Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex. J Virol. 2006 Jun 15;80(12):5927–40.
26. Krijnse-Locker J, Ericsson M, Rottier PJM, Griffiths G. Characterization of the budding compartment of mouse hepatitis virus: Evidence that transport from the RER to the Golgi complex requires only one vesicular transport step. J Cell Biol. 1994;124(1–2):55–70.
27. Pineau L, Colas J, Dupont S, Beney L, Fleurat-Lessard P, Berjeaud J-M, et al. Lipid-Induced ER Stress: Synergistic Effects of Sterols and Saturated Fatty Acids. Traffic [Internet]. 2009 Jun 1 [cited 2020 Apr 25];10(6):673–90. Available from:
28. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Vol. 8, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2007. p. 519–29.
29. Fung TS, Liu DX. Coronavirus infection, ER stress, apoptosis and innate immunity. Vol. 5, Frontiers in Microbiology. Frontiers Research Foundation; 2014.
30. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Vol. 13, Nature Cell Biology. NIH Public Access; 2011. p. 184–90.
31. Reshi L, Wang H-V, Hong J-R. Modulation of Mitochondria During Viral Infections. In: Mitochondrial Diseases. InTech; 2018.
32. Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. Once we were bacteria.. mitochondria to infinity and beyond. Vol. 8, Journal of Pediatric and Neonatal Individualized Medicine. Hygeia Press di Corridori Marinella; 2019. p. e080106.
33. Viruses as Modulators of Mitochondrial Functions [Internet]. [cited 2020 May 16]. Available from:
34. Wallace DC. A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: A Dawn for Evolutionary Medicine. Annu Rev Genet. 2005 Dec;39(1):359–407.
35. Reshi ML, Su Y-C, Hong J-R. RNA Viruses: ROS-Mediated Cell Death. Int J Cell Biol. 2014;2014.
36. Glingston RS, Deb R, Kumar S, Nagotu S. Organelle dynamics and viral infections: at cross roads. Vol. 21, Microbes and Infection. Elsevier Masson SAS; 2019. p. 20–32.
37. Woodward CL, Prakobwanakit S, Mosessian S, Chow SA. Integrase Interacts with Nucleoporin NUP153 To Mediate the Nuclear Import of Human Immunodeficiency Virus Type 1. J Virol. 2009 Jul 1;83(13):6522–33.
38. Khan M, Syed GH, Kim SJ, Siddiqui A. Mitochondrial dynamics and viral infections: A close nexus. Vol. 1853, Biochimica et Biophysica Acta - Molecular Cell Research. Elsevier; 2015. p. 2822–33.
39. Chan DC. Mitochondria: Dynamic Organelles in Disease, Aging, and Development. Vol. 125, Cell. Elsevier; 2006. p. 1241–52.
40. Chen H, Chan DC. Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet [Internet]. 2009 Oct 15;18(R2):R169–76. Available from:
41. [Recognition of Pathogens by Innate Immunity] - PubMed [Internet]. [cited 2020 May 17]. Available from:
42. Mitochondria: More than Just “Power Plants” in Stem Cells [Internet]. [cited 2020 May 17]. Available from:
43. Castanier C, Garcin D, Vazquez A, Arnoult D. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 2010 Feb;11(2):133–8.
44. Fukushi M, Yoshinaka Y, Matsuoka Y, Hatakeyama S, Ishizaka Y, Kirikae T, et al. Monitoring of S Protein Maturation in the Endoplasmic Reticulum by Calnexin Is Important for the Infectivity of Severe Acute Respiratory Syndrome Coronavirus. J Virol. 2012 Nov 1;86(21):11745–53.
45. Taylor RC, Cullen SP, Martin SJ. Apoptosis: Controlled demolition at the cellular level. Vol. 9, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2008. p. 231–41.
46. Ogata M, Hino S -i., Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy Is Activated for Cell Survival after Endoplasmic Reticulum Stress. Mol Cell Biol. 2006 Dec 15;26(24):9220–31.
47. Urano F, Wang XZ, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science (80- ). 2000 Jan 28;287(5453):664–6.
48. Smeal T, Binetruy B, Mercola DA, Birrer M, Karin M. Oncogenic and transcriptional cooperation with Ha-Ras requires phosphorylation of c-Jun on serines 63 and 73. Nature. 1991;354(6353):494–6.
49. Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 Is Phosphorylated and Inactivated by an ASK1/Jun N-Terminal Protein Kinase Pathway Normally Activated at G 2 /M . Mol Cell Biol. 1999 Dec 1;19(12):8469–78.
50. Mizutani T, Fukushi S, Saijo M, Kurane I, Morikawa S. JNK and PI3k/Akt signaling pathways are required for establishing persistent SARS-CoV infection in Vero E6 cells. Biochim Biophys Acta - Mol Basis Dis. 2005 Jun 30;1741(1–2):4–10.
51. Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A, Haller O, et al. Inhibition of Beta Interferon Induction by Severe Acute Respiratory Syndrome Coronavirus Suggests a Two-Step Model for Activation of Interferon Regulatory Factor 3. J Virol. 2005 Feb 15;79(4):2079–86.
52. Shi C-S, Qi H-Y, Boularan C, Huang N-N, Abu-Asab M, Shelhamer JH, et al. SARS-Coronavirus Open Reading Frame-9b Suppresses Innate Immunity by Targeting Mitochondria and the MAVS/TRAF3/TRAF6 Signalosome. J Immunol. 2014 Sep 15;193(6):3080–9.
53. Kawai T, Akira S. Antiviral Signaling Through Pattern Recognition Receptors. J Biochem [Internet]. 2006 Dec 26;141(2):137–45. Available from:
54. You F, Sun H, Zhou X, Sun W, Liang S, Zhai Z, et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat Immunol. 2009 Nov 1;10(12):1300–8.
55. Maier HJ, Britton P. Involvement of autophagy in coronavirus replication. Vol. 4, Viruses. Multidisciplinary Digital Publishing Institute (MDPI); 2012. p. 3440–51.
56. Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Vol. 337, Science. American Association for the Advancement of Science; 2012. p. 1062–5.
57. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10190–5.
58. Pathways in COVID-19 replication and pre-clinical drug target identification [Internet]. [cited 2020 Apr 25]. Available from:
59. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O’Meara MJ, et al. A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing. bioRxiv [Internet]. 2020 Mar 27 [cited 2020 Apr 25];2020.03.22.002386. Available from:
60. Guzzi PH, Mercatelli D, Ceraolo C, Giorgi FM. Master Regulator Analysis of the SARS-CoV-2/Human Interactome. J Clin Med [Internet]. 2020 Apr 1 [cited 2020 Apr 25];9(4):982. Available from:







How to Cite

Madeddu E, Maniga B, Zaffanello M, Fanos V, Marcialis A. The SARS-CoV2 and mitochondria: the impact on cell fate: SARS-CoV2 and mitochondria. Acta Biomed [Internet]. 2022 May 11 [cited 2024 Jul. 13];93(2):e2022199. Available from: