The Modular Concept in Skull Base Surgery: Anatomical Basis of the Median, Paramedian and Lateral Corridors

Main Article Content

Alice Giotta Lucifero
Juan C Fernandez-Miranda
Maximiliano Nunez
Nunzio Bruno
Nicola Tartaglia
Antonio Ambrosi
Gian Luigi Marseglia
Renato Galzio
Sabino Luzzi

Keywords

Anterior Skull Base, Endoscopic Skull base Approaches, Foramen Magnum, Jugular Foramen, Jugular Tubercle, Middle Skull Base, Posterior Skull Base

Abstract

Introduction


A thorough understanding of skull base anatomy is imperative to perform safely and effectively any skull base approach. In this article, we examine the microsurgical anatomy of the skull base by proposing a modular topographic organization in the median, paramedian, and lateral surgical corridors in relation to transcranial and endoscopic approaches.


Methods


Five dry skulls were studied focusing on the intracranial and exocranial skull base. Two lines were drawn parallel to the lateral border of the cribriform plate of the ethmoid bone and foramen lacerum, respectively. Lines 1 and 2 delimited the median, paramedian and lateral corridors of the skull base. The bony structures that formed each corridor were carefully reviewed in relation to the planning and execution of the skull base transcranial and endoscopic approaches.


Results


The midline corridor involves the crista galli, cribriform plate, planum and jugum sphenoidale, chiasmatic sulcus, tuberculum sellae, sellar region, dorsum sellae, clivus, and foramen magnum. The paramedian corridor includes the fovea ethmoidalis, the root of the lesser and greater sphenoid wing, anterior clinoid process, foramen lacerum, the upper half of the petro-occipital suture, and jugular tubercle. The lateral corridors include the orbital plates, sphenoid wings, squamosal and petrous parts of the temporal bone, caudal aspect of the petro-occipital suture, internal auditory canal, jugular foramen, the sulcus of the sigmoid sinus.


Conclusion


In-depth three-dimensional knowledge of skull base anatomy based on the modular concept of the surgical corridors is critical for the planning and execution of the transcranial and endoscopic approaches.

Downloads

Download data is not yet available.
Abstract 212 | PDF Downloads 75

References

1. Patel CR, Fernandez-Miranda JC, Wang WH, Wang EW. Skull Base Anatomy. Otolaryngol Clin North Am. 2016;49(1):9-20.
2. Standring S. Gray's Anatomy: The Anatomical Basis of Clinical Practice: Elsevier Limited; 2016.
3. Lang J. Skull Base and Related Structures: Atlas of Clinical Anatomy: Schattauer; 2001.
4. Rhoton AL, Jr. The anterior and middle cranial base. Neurosurgery. 2002;51(4 Suppl):S273-302.
5. Rhoton AL, Jr. The orbit. Neurosurgery. 2002;51(4 Suppl):S303-34.
6. Rhoton AL, Jr. The sellar region. Neurosurgery. 2002;51(4 Suppl):S335-74.
7. Rhoton AL, Jr. The cavernous sinus, the cavernous venous plexus, and the carotid collar. Neurosurgery. 2002;51(4 Suppl):S375-410.
8. Salgado-López L, Campos-Leonel LCP, Pinheiro-Neto CD, Peris-Celda M. Orbital Anatomy: Anatomical Relationships of Surrounding Structures. J Neurol Surg B Skull Base. 2020;81(4):333-47.
9. Microsurgical Anatomy and Surgery of the Central Skull Base. American Journal of Neuroradiology. 2005;26(5):1292-3.
10. Stamm AC. Transnasal Endoscopic Skull Base and Brain Surgery: Surgical Anatomy and its Applications: Thieme; 2019.
11. Borba L, de Oliveira JG. Microsurgical and Endoscopic Approaches to the Skull Base: Anatomy, Tactics, and Techniques: Thieme Medical Publishers, Incorporated; 2021.
12. Hanna EY, DeMonte F. Comprehensive Management of Skull Base Tumors: Thieme; 2021.
13. Sanna M, Saleh EA. Atlas of Microsurgery of the Lateral Skull Base: Thieme; 2011.
14. Fisch U, Mattox DE. Microsurgery of the Skull Base: N.Y.; 1988.
15. Bassed RB, Briggs C, Drummer OH. Analysis of time of closure of the spheno-occipital synchondrosis using computed tomography. Forensic Sci Int. 2010;200(1-3):161-4.
16. Abdel Aziz KM, Sanan A, van Loveren HR, Tew JM, Jr., Keller JT, Pensak ML. Petroclival meningiomas: predictive parameters for transpetrosal approaches. Neurosurgery. 2000;47(1):139-50; discussion 50-2.
17. Luzzi S DMM, Elia A, Vincitorio F, Di Perna G, Zenga F, Garbossa D, Elbabaa S, Galzio R Morphometric and Radiomorphometric Study of the Correlation Between the Foramen Magnum Region and the Anterior and Posterolateral Approaches to Ventral Intradural Lesions. Turkish Neurosurgery. 2019;In Press.
18. Funaki T, Matsushima T, Peris-Celda M, Valentine RJ, Joo W, Rhoton AL, Jr. Focal transnasal approach to the upper, middle, and lower clivus. Neurosurgery. 2013;73(2 Suppl Operative):ons155-90; discussion ons90-1.
19. Wen HT, Rhoton AL, Jr., Katsuta T, de Oliveira E. Microsurgical anatomy of the transcondylar, supracondylar, and paracondylar extensions of the far-lateral approach. J Neurosurg. 1997;87(4):555-85.
20. Rhoton AL, Jr. The foramen magnum. Neurosurgery. 2000;47(3 Suppl):S155-93.
21. de Oliveira E, Rhoton AL, Jr., Peace D. Microsurgical anatomy of the region of the foramen magnum. Surg Neurol. 1985;24(3):293-352.
22. Mintelis A, Sameshima T, Bulsara KR, Gray L, Friedman AH, Fukushima T. Jugular tubercle: Morphometric analysis and surgical significance. J Neurosurg. 2006;105(5):753-7.
23. Ciappetta P, Occhiogrosso G, Luzzi S, D'Urso PI, Garribba AP. Jugular tubercle and vertebral artery/posterior inferior cerebellar artery anatomic relationship: a 3-dimensional angiography computed tomography anthropometric study. Neurosurgery. 2009;64(5 Suppl 2):429-36; discussion 36.
24. Luzzi S, Del Maestro M, Elia A, Vincitorio F, Di Perna G, Zenga F, et al. Morphometric and Radiomorphometric Study of the Correlation Between the Foramen Magnum Region and the Anterior and Posterolateral Approaches to Ventral Intradural Lesions. Turk Neurosurg. 2019.
25. Naderi S, Korman E, Citak G, Guvencer M, Arman C, Senoglu M, et al. Morphometric analysis of human occipital condyle. Clin Neurol Neurosurg. 2005;107(3):191-9.
26. Muthukumar N, Swaminathan R, Venkatesh G, Bhanumathy SP. A morphometric analysis of the foramen magnum region as it relates to the transcondylar approach. Acta Neurochir (Wien). 2005;147(8):889-95.
27. Karasu A, Cansever T, Batay F, Sabanci PA, Al-Mefty O. The microsurgical anatomy of the hypoglossal canal. Surgical and radiologic anatomy : SRA. 2009;31:363-7.
28. Katsuta T, Matsushima T, Wen HT, Rhoton AL. Trajectory of the hypoglossal nerve in the hypoglossal canal: significance for the transcondylar approach. Neurologia medico-chirurgica. 2000;40:206-9; discussion 10.
29. Kirdani MA. The normal hypoglossal canal. The American journal of roentgenology, radium therapy, and nuclear medicine. 1967;99(3):700--4.
30. Lang J, Hornung G. [The hypoglossal channel and its contents in the posterolateral access to the petroclival area]. Neurochirurgia. 1993;36:75-80.
31. Guidotti A. Morphometrical considerations on occipital condyles. Anthropologischer Anzeiger; Bericht über die biologisch-anthropologische Literatur. 1984;42(2):117--9.
32. Olivier G. Biometry of the human occipital bone. J Anat. 1975;120(Pt 3):507-18.
33. Bozbuga M, Ozturk A, Bayraktar B, Ari Z, Sahinoglu K, Polat G, et al. Surgical anatomy and morphometric analysis of the occipital condyles and foramen magnum. Okajimas Folia Anat Jpn. 1999;75(6):329-34.
34. Matsushima T, Kawashima M, Masuoka J, Mineta T, Inoue T. Transcondylar fossa (supracondylar transjugular tubercle) approach: anatomic basis for the approach, surgical procedures, and surgical experience. Skull Base. 2010;20(2):83-91.
35. Matsushima K, Kawashima M, Matsushima T, Hiraishi T, Noguchi T, Kuraoka A. Posterior condylar canals and posterior condylar emissary veins—a microsurgical and CT anatomical study. Neurosurgical Review. 2014;37(1):115-26.
36. Matsushima KaFTaKNaKHaKMaRAL. Microsurgical anatomy of the lateral condylar vein and its clinical significance. Neurosurgery. 2015;11 Suppl 2:135--45; discussion 45--6.
37. Williams PL. Gray's anatomy. Nervous System. 1995:1240-3.
38. Avci E, Kocaogullar Y, Fossett D, Caputy A. Lateral posterior fossa venous sinus relationships to surface landmarks. Surg Neurol. 2003;59(5):392-7; discussion 7.
39. Bozbuga M, Boran BO, Sahinoglu K. Surface anatomy of the posterolateral cranium regarding the localization of the initial burr-hole for a retrosigmoid approach. Neurosurg Rev. 2006;29(1):61-3.
40. da Silva EB, Jr., Leal AG, Milano JB, da Silva LF, Jr., Clemente RS, Ramina R. Image-guided surgical planning using anatomical landmarks in the retrosigmoid approach. Acta Neurochir (Wien). 2010;152(5):905-10.
41. Day JD, Kellogg JX, Tschabitscher M, Fukushima T. Surface and superficial surgical anatomy of the posterolateral cranial base: significance for surgical planning and approach. Neurosurgery. 1996;38:1079-83; discussion 83-4.
42. Day JD, Tschabitscher M. Anatomic position of the asterion. Neurosurgery. 1998;42(1):198-9.
43. Duangthongpon P, Thanapaisal C, Kitkhuandee A, Chaiciwamongkol K, Morthong V. The Relationships between Asterion, the Transverse-Sigmoid Junction, the Superior Nuchal Line and the Transverse Sinus in Thai Cadavers: Surgical Relevance. J Med Assoc Thai. 2016;99 Suppl 5:S127-S31.
44. Galindo-de León S, Hernández-Rodríguez AN, Morales-Ávalos R, Theriot-Girón MDC, Elizondo-Omaña RE, Guzmán-López S. Morphometric characteristics of the asterion and the posterolateral surface of the skull: its relationship with dural venous sinuses and its neurosurgical importance. Cir Cir. 2013;81(4):269-73.
45. Hall S, Peter Gan Y-C. Anatomical localization of the transverse-sigmoid sinus junction: Comparison of existing techniques. Surgical neurology international. 2019;10:186-.
46. Hwang RS, Turner RC, Radwan W, Singh R, Lucke-Wold B, Tarabishy A, et al. Relationship of the sinus anatomy to surface landmarks is a function of the sinus size difference between the right and left side: Anatomical study based on CT angiography. Surgical neurology international. 2017;8:58-.
47. Xia L, Zhang M, Qu Y, Ren M, Wang H, Zhang H, et al. Localization of transverse-sigmoid sinus junction using preoperative 3D computed tomography: application in retrosigmoid craniotomy. Neurosurgical review. 2012;35(4):593-9.
48. Dallan I, Di Somma A, Prats-Galino A, Solari D, Alobid I, Turri-Zanoni M, et al. Endoscopic transorbital route to the cavernous sinus through the meningo-orbital band: a descriptive anatomical study. Journal of Neurosurgery JNS. 2017;127(3):622-9.
49. Dallan I, Sellari-Franceschini S, Turri-Zanoni M, de Notaris M, Fiacchini G, Fiorini FR, et al. Endoscopic Transorbital Superior Eyelid Approach for the Management of Selected Spheno-orbital Meningiomas: Preliminary Experience. Operative Neurosurgery. 2017;14(3):243-51.
50. Di Somma A, Cavallo LM, de Notaris M, Solari D, Topczewski TE, Bernal-Sprekelsen M, et al. Endoscopic endonasal medial-to-lateral and transorbital lateral-to-medial optic nerve decompression: an anatomical study with surgical implications. Journal of Neurosurgery JNS. 2017;127(1):199-208.
51. Di Somma A, Andaluz N, Cavallo LM, de Notaris M, Dallan I, Solari D, et al. Endoscopic transorbital superior eyelid approach: anatomical study from a neurosurgical perspective. Journal of Neurosurgery JNS. 2018;129(5):1203-16.
52. Di Somma A, Andaluz N, Cavallo LM, Keller JT, Solari D, Zimmer LA, et al. Supraorbital vs Endo-Orbital Routes to the Lateral Skull Base: A Quantitative and Qualitative Anatomic Study. Operative Neurosurgery. 2018;15(5):567-76.
53. Chung HJ, Moon IS, Cho HJ, Kim CH, Sharhan SSA, Chang JH, et al. Analysis of Surgical Approaches to Skull Base Tumors Involving the Pterygopalatine and Infratemporal Fossa. J Craniofac Surg. 2019;30(2):589-95.
54. Labib MA, Prevedello DM, Carrau R, Kerr EE, Naudy C, Abou Al-Shaar H, et al. A road map to the internal carotid artery in expanded endoscopic endonasal approaches to the ventral cranial base. Neurosurgery. 2014;10 Suppl 3:448-71; discussion 71.
55. Barges-Coll J, Fernandez-Miranda JC, Prevedello DM, Gardner P, Morera V, Madhok R, et al. Avoiding injury to the abducens nerve during expanded endonasal endoscopic surgery: anatomic and clinical case studies. Neurosurgery. 2010;67(1):144-54; discussion 54.
56. Joo W, Funaki T, Yoshioka F, Rhoton AL, Jr. Microsurgical anatomy of the infratemporal fossa. Clin Anat. 2013;26(4):455-69.
57. Bejjani GKaSBaS-LEaAJaWDCaJAaSLN. Surgical anatomy of the infratemporal fossa: the styloid diaphragm revisited. Neurosurgery. 1998;43(4):842--52; discussion 52--3.
58. Bejjani GK, Sullivan B, Salas-Lopez E, Abello J, Wright DC, Jurjus A, et al. Surgical anatomy of the infratemporal fossa: the styloid diaphragm revisited. Neurosurgery. 1998;43(4):842-52; discussion 52-3.
59. Carrau RL, Myers EN, Johnson JT. Management of tumors arising in the parapharyngeal space. Laryngoscope. 1990;100(6):583-9.
60. Cohen SM, Burkey BB, Netterville JL. Surgical management of parapharyngeal space masses. Head Neck. 2005;27(8):669-75.
61. Dimitrijevic MV, Jesic SD, Mikic AA, Arsovic NA, Tomanovic NR. Parapharyngeal space tumors: 61 case reviews. Int J Oral Maxillofac Surg. 2010;39(10):983-9.
62. Eisele DE, Netterville JL, Hoffman HT, Gantz BJ. Parapharyngeal space masses. Head Neck. 1999;21(2):154-9.
63. Khafif A, Segev Y, Kaplan DM, Gil Z, Fliss DM. Surgical management of parapharyngeal space tumors: a 10-year review. Otolaryngol Head Neck Surg. 2005;132(3):401-6.
64. Luzzi S, Giotta Lucifero A, Del Maestro M, Marfia G, Navone SE, Baldoncini M, et al. Anterolateral Approach for Retrostyloid Superior Parapharyngeal Space Schwannomas Involving the Jugular Foramen Area: A 20-Year Experience. World Neurosurg. 2019.
65. Shahinian H, Dornier C, Fisch U. Parapharyngeal space tumors: the infratemporal fossa approach. Skull Base Surg. 1995;5(2):73-81.
66. Som PM, Biller HF, Lawson W. Tumors of the parapharyngeal space: preoperative evaluation, diagnosis and surgical approaches. Ann Otol Rhinol Laryngol Suppl. 1981;90(1 Pt 4):3-15.
67. Stell PM, Mansfield AO, Stoney PJ. Surgical approaches to tumors of the parapharyngeal space. Am J Otolaryngol. 1985;6(2):92-7.
68. Ferrari M, Schreiber A, Mattavelli D, Lombardi D, Rampinelli V, Doglietto F, et al. Surgical anatomy of the parapharyngeal space: Multiperspective, quantification-based study. Head & Neck. 2019;41(3):642-56.
69. Luzzi S, Del Maestro M, Elbabaa SK, Galzio R. Letter to the Editor Regarding "One and Done: Multimodal Treatment of Pediatric Cerebral Arteriovenous Malformations in a Single Anesthesia Event". World Neurosurg. 2020;134:660.
70. Luzzi S, Gragnaniello C, Giotta Lucifero A, Del Maestro M, Galzio R. Surgical Management of Giant Intracranial Aneurysms: Overall Results of a Large Series. World Neurosurg. 2020;144:e119-e37.
71. Luzzi S, Gragnaniello C, Giotta Lucifero A, Del Maestro M, Galzio R. Microneurosurgical management of giant intracranial aneurysms: Datasets of a twenty-year experience. Data Brief. 2020;33:106537.
72. Del Maestro M, Rampini AD, Mauramati S, Giotta Lucifero A, Bertino G, Occhini A, et al. Dye-Perfused Human Placenta for Vascular Microneurosurgery Training: Preparation Protocol and Validation Testing. World Neurosurg. 2020.
73. Luzzi S, Del Maestro M, Galzio R. Letter to the Editor. Preoperative embolization of brain arteriovenous malformations. J Neurosurg. 2019;132(6):2014-6.
74. Kassam AB, Prevedello DM, Carrau RL, Snyderman CH, Thomas A, Gardner P, et al. Endoscopic endonasal skull base surgery: analysis of complications in the authors' initial 800 patients. J Neurosurg. 2011;114(6):1544-68.
75. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurgical Focus FOC. 2005;19(1):1-12.
76. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL. Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurgical Focus FOC. 2005;19(1):1-7.
77. Yaşargil MG. Microneurosurgery: Thieme; 1984.
78. Krisht AF. Transcavernous approach to diseases of the anterior upper third of the posterior fossa. Neurosurg Focus. 2005;19(2):E2.
79. Krisht AF, Kadri PA. Surgical clipping of complex basilar apex aneurysms: a strategy for successful outcome using the pretemporal transzygomatic transcavernous approach. Neurosurgery. 2005;56(2 Suppl):261-73; discussion -73.
80. Krisht AF, Krayenbuhl N, Sercl D, Bikmaz K, Kadri PA. Results of microsurgical clipping of 50 high complexity basilar apex aneurysms. Neurosurgery. 2007;60(2):242-50; discussion 50-2.
81. Heros RC. Lateral suboccipital approach for vertebral and vertebrobasilar artery lesions. J Neurosurg. 1986;64(4):559-62.
82. Kawase T, Toya S, Shiobara R, Mine T. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg. 1985;63(6):857-61.
83. Al-Mefty O, Fox JL, Smith RR. Petrosal approach for petroclival meningiomas. Neurosurgery. 1988;22(3):510-7.
84. Drake CG. Bleeding aneurysms of the basilar artery. Direct surgical management in four cases. J Neurosurg. 1961;18:230-8.
85. Drake CG. Bleeding aneurysms of the basilar artery. Direct surgical management in four cases. 1961. Can J Neurol Sci. 1999;26(4):335-40.
86. Akdemir G, Tekdemir I, Altin L. Transethmoidal approach to the optic canal: surgical and radiological microanatomy. Surg Neurol. 2004;62(3):268-74; discussion 74.
87. Greenfield JP, Anand VK, Kacker A, Seibert MJ, Singh A, Brown SM, et al. Endoscopic endonasal transethmoidal transcribriform transfovea ethmoidalis approach to the anterior cranial fossa and skull base. Neurosurgery. 2010;66(5):883-92; discussion 92.
88. Hofstetter CP, Singh A, Anand VK, Kacker A, Schwartz TH. The endoscopic, endonasal, transmaxillary transpterygoid approach to the pterygopalatine fossa, infratemporal fossa, petrous apex, and the Meckel cave. J Neurosurg. 2010;113(5):967-74.
89. Morera VA, Fernandez-Miranda JC, Prevedello DM, Madhok R, Barges-Coll J, Gardner P, et al. "Far-medial" expanded endonasal approach to the inferior third of the clivus: the transcondylar and transjugular tubercle approaches. Neurosurgery. 2010;66(6 Suppl Operative):211-9; discussion 9-20.
90. Kassam AB, Prevedello DM, Carrau RL, Snyderman CH, Gardner P, Osawa S, et al. The front door to meckel's cave: an anteromedial corridor via expanded endoscopic endonasal approach- technical considerations and clinical series. Neurosurgery. 2009;64(3 Suppl):ons71-82; discussion ons-3.
91. Luzzi S, Zoia C, Rampini AD, Elia A, Del Maestro M, Carnevale S, et al. Lateral Transorbital Neuroendoscopic Approach for Intraconal Meningioma of the Orbital Apex: Technical Nuances and Literature Review. World Neurosurg. 2019;131:10-7.
92. Peron S, Cividini A, Santi L, Galante N, Castelnuovo P, Locatelli D. Spheno-Orbital Meningiomas: When the Endoscopic Approach Is Better. Acta Neurochir Suppl. 2017;124:123-8.
93. Zoia C, Bongetta D, Dorelli G, Luzzi S, Maestro MD, Galzio RJ. Transnasal endoscopic removal of a retrochiasmatic cavernoma: A case report and review of literature. Surg Neurol Int. 2019;10:76.
94. Arnaout MM, Luzzi S, Galzio R, Aziz K. Supraorbital keyhole approach: Pure endoscopic and endoscope-assisted perspective. Clin Neurol Neurosurg. 2019;189:105623.
95. Gardner PA, Vaz-Guimaraes F, Jankowitz B, Koutourousiou M, Fernandez-Miranda JC, Wang EW, et al. Endoscopic Endonasal Clipping of Intracranial Aneurysms: Surgical Technique and Results. World Neurosurg. 2015;84(5):1380-93.
96. Heiferman DM, Somasundaram A, Alvarado AJ, Zanation AM, Pittman AL, Germanwala AV. The endonasal approach for treatment of cerebral aneurysms: A critical review of the literature. Clin Neurol Neurosurg. 2015;134:91-7.
97. Palumbo P, Lombardi F, Augello FR, Giusti I, Luzzi S, Dolo V, et al. NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. Int J Mol Sci. 2019;20(12).
98. Luzzi S, Crovace AM, Del Maestro M, Giotta Lucifero A, Elbabaa SK, Cinque B, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11).
99. Raysi Dehcordi S, Ricci A, Di Vitantonio H, De Paulis D, Luzzi S, Palumbo P, et al. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations. World Neurosurg. 2017;105:895-905.
100. Giotta Lucifero A, Luzzi S, Brambilla I, Trabatti C, Mosconi M, Savasta S, et al. Innovative therapies for malignant brain tumors: the road to a tailored cure. Acta Biomed. 2020;91(7-s):5-17.
101. Dorfer C, Rydenhag B, Baltuch G, Buch V, Blount J, Bollo R, et al. How technology is driving the landscape of epilepsy surgery. Epilepsia. 2020;61(5):841-55.
102. Cho J, Rahimpour S, Cutler A, Goodwin CR, Lad SP, Codd P. Enhancing Reality: A Systematic Review of Augmented Reality in Neuronavigation and Education. World Neurosurg. 2020;139:186-95.
103. Bellantoni G, Guerrini F, Del Maestro M, Galzio R, Luzzi S. Simple schwannomatosis or an incomplete Coffin-Siris? Report of a particular case. eNeurologicalSci. 2019;14:31-3.
104. McBeth PB, Louw DF, Rizun PR, Sutherland GR. Robotics in neurosurgery. The American Journal of Surgery. 2004;188(4):68-75.
105. Rohde V, Spangenberg P, Mayfrank L, Reinges M, Gilsbach JM, Coenen VA. Advanced neuronavigation in skull base tumors and vascular lesions. Minim Invasive Neurosurg. 2005;48(1):13-8.
106. Snyderman CH, Carrau RL, Prevedello DM, Gardner P, Kassam AB. Technologic innovations in neuroendoscopic surgery. Otolaryngol Clin North Am. 2009;42(5):883-90, x.
107. Luzzi S, Giotta Lucifero A, Martinelli A, Maestro MD, Savioli G, Simoncelli A, et al. Supratentorial high-grade gliomas: maximal safe anatomical resection guided by augmented reality high-definition fiber tractography and fluorescein. Neurosurg Focus. 2021;51(2):E5.

Most read articles by the same author(s)

1 2 3 > >>