Effects of iron- chelation therapy intensification on glucose homeostasis during 3-h oral glucose tolerance test (OGTT) in transfusion-dependent β-thalassemia patients (β-TDT)

This is a preview and has not been published.

Effects of iron- chelation therapy intensification on glucose homeostasis during 3-h oral glucose tolerance test (OGTT) in transfusion-dependent β-thalassemia patients (β-TDT)

Authors

  • Vincenzo De Sanctis Quisisana Hospital, Ferrara
  • Shahina Daar Department of Hematology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Sultanate of Oman
  • Ashraf Soliman Department of Pediatrics, Division of Endocrinology, Hamad General Hospital, Doha, Qatar
  • Saveria Campisi UOSD Thalassemia, Umberto I Hospital, Siracusa, Italy
  • Ploutarchos Tzoulis Department of Diabetes and Endocrinology, Whittington Hospital, University College London, London, UK

Keywords:

Transfusion-dependent thalassemia, iron overload, intensification chelation therapy, OGTT, follow-up

Abstract

Background: Iron overload (IOL) due to chronic transfusion therapy in β-thalassemia major (β-TDT) patients leads to multi-organ damage, including glucose dysregulation (GD). The effectiveness of intensified iron chelation therapy (ICT) on glucose homeostasis and its ability to reverse iron-induced endocrinopathies is not fully understood. Objectives: To assess the effects of intensified ICT on glucose homeostasis, insulin secretion, and sensitivity in adolescent and very young adult β-TDT patients with moderate to severe IOL. Methods: This retrospective study evaluated 19 β-TDT patients who underwent intensified ICT with the aim of reducing serum ferritin (SF) to 500-1,000 ng/mL. Over a median follow-up of 4.2 years, parameters including oral glucose tolerance test (OGTT), insulin response, and serum ferritin levels were analyzed. Results: Despite a marked reduction in SF and IOL, the prevalence of GD remained unchanged (P= 0.75). Some patients showed improvement in glucose tolerance, whereas other developed new endocrine disorders, such as hypogonadotropic hypogonadism and secondary amenorrhea. Improvements were seen in insulin sensitivity, but not in pancreatic β-cell function. Conclusion: Intensified ICT in β-TDT patients, albeit effectively reducing iron burden, did not uniformly reverse established glucose homeostasis disorders. While some endocrine functions improved, others deteriorated or developed a new complication, suggesting that more aggressive or prolonged ICT may be necessary. Long-term studies are required to better understand the impact of ICT on endocrine organ function. (www.actabiomedica.it)

References

Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V. In: Guidelines for the management of transfusion dependent thalassaemia (TDT) 3rd edition ed. Cappellini MD, Cohen A, Porter J, Taher A, Viprakasit V, editors. Cyprus: Thalassaemia International Federation; 2014.

Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia. Hemasphere. 2022; 6(8): e732. doi:10.1097/HS9.0000000000000732.

Coates TD. Physiology and pathophysiology of iron in hemoglobin associated diseases. Free Radic Biol Med. 2014;72:23–40. doi: 10.1016/j.freeradbiomed.2014.03.039.

Reddy PS, Locke M, Badawy SM. A systematic review of adherence to iron chelation therapy among children and adolescents with thalassemia. Ann Med. 2022; 54 (1):326-42. doi: 10.1080 /07853890. 2022. 2028894,

Prasad B. Iron. Available online: emedicine.medscape.com.2085704-overview. Updated: Mar 09, 2022.

Krittayaphong R, Viprakasit V, Saiviroonporn P, Wangworatrakul W, Wood JC. Serum ferritin in the diagnosis of cardiac and liver iron overload in thalassaemia patients real-world practice: a multicentre study. Br J Haematol. 2017;182(2):301-5. doi.org/10.1111/bjh.14776.

Shah F, Huey K, Deshpande S, et al. Relationship between Serum Ferritin and Outcomes in β-Thalassemia: A Systematic Literature Review. J Clin Med. 2022;11(15):4448. doi.org/ 10.3390/ jcm11154448.

Poggi M, Sorrentino F, Pugliese P, et al. Longitudinal changes of endocrine and bone disease in adults with β-thalassemia major receiving different iron chelators over 5 years. Ann Hematol. 2016;95(5):757-63. doi.10.1007/s00277-016-2633-y.

Origa R, Cinus M, Pilia MP, et al. Safety and Efficacy of the New Combination Iron Chelation Regimens in Patients with Transfusion-Dependent Thalassemia and Severe Iron Overload. J Clin Med. 2022; 11(7): 2010. doi.10.33907jcm11072010.

Adramerina A, Economou M. Challenges of Iron Chelation in Thalassemic Children. Thalass Rep. 2024: 14 (1):1-9. doi: 10.20944/preprints202312.

Platis O, Anagnostopoulos G, Farmaki K, Posantzis M, Gotsis E, Tolis G. Glucose metabolism disorders improvement in patients with thalassaemia major after 24–36 months of intensive chelation therapy. Pediatr Endocrinol Rev. 2004;2 (Suppl 2):279–81.PIMD:16462711.

Christoforidis A, Perifanis V, Athanassiou‐Metaxa M. Combined chelation therapy improves glucose metabolism in patients with β‐thalassaemia major. Br J Haematol. 2006; 135 (2): 271-2.doi.10.1111/ j.1365-2141.2006.06296.x.

Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. Effect of enhanced iron chelation therapy on glucose metabolism in patients with beta-thalassaemia major. Br J Haematol. 2006;134 (4):438–44.doi.10.1111/j.1365-2141.2006.06203.x.

Farmaki K, Tzoumari I, Pappa C, Chouliaras G, Berdoukas V. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-75. doi:10.1111/j.1365-2141.2009.07970.x.

Fragodimitri C, Schiza V, Giakoumis A, et al. Successful chelation in beta-thalassemia major in the 21st century. Medicine (Baltimore). 2023; 102(41):e35455.doi:10. 1097/MD.0000000000035455.

De Sanctis V, Soliman AT, Elsedfy H, et al. Growth and endocrine disorders in talassemia. The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17(1):8-18.doi:10.4103/2230-8210.107808.

American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2020. Diabetes Care. 2020; 43(Suppl.1): S14-S31. doi.org/10.2337/dc20-S002.

De Sanctis V, Soliman A, Tzoulis P, Daar S, Pozzobon G, Kattamis C. A study of isolated hyperglycemia (blood glucose ≥155 mg/dL) at 1-hour of oral glucose tolerance test (OGTT) in patients with β-transfusion dependent thalassemia (β-TDT) followed for 12 years. Acta Biomed. 2021;92(4): e2021322. doi: 10.23750/abm.v92i4.11105.

Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocr Metab. 2015;19 (1):160-4.doi:10.4103/2230-8210.146874.

Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9.doi:10.1007/BF00280883.

Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21(12):2191–2. doi.org/10.2337/ diacare.21.12.2191.

Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6): 1487–95. doi.org/10.2337/diacare.27.6.1487.

Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462-70. doi:10.2337/ diacare. 22.9.1462.

Utzschneider KM, Prigeon RL, Faulenbach MV, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335-41.doi: 10.2337/dc08-1478.

De Sanctisv, Soliman A, Tzoulis P, et al. Clinical characteristics, biochemical parameters and insulin response to oral glucose tolerance test (OGTT) in 25 transfusion dependent β-thalassemia (TDT) patients recently diagnosed with diabetes mellitus (DM).Acta Biomed. 2022;92 (6): e2021488. doi:10.23750/ abm. v92i6.12366.

Kernan WN, Inzucchi SE, Viscoli CM, et al. Pioglitazone improves insulin sensitivity among nondiabetic patients with a recent transient ischemic attack or ischemic stroke. Stroke. 2003; 34 (6):1431–6. doi:10. 1161/ 01.STR.0000071108.00234.OE.

Alder R, Roesser EB. Introduction to probability and statistics. WH Freeman and Company Eds. Sixth Edition. San Francisco (USA), 1975. PMID:1674139.

De Sanctis V, Soliman AT, Daar S, Tzoulis P, Di Maio S, Kattamis C. Longitudinal study of ICET-A on glucose tolerance, insulin sensitivity and β-cell secretion in eleven β-thalassemia major patients with mild iron overload. Acta Biomed. 2023;94(1): e2023011.doi: 10.23750/abm.v94i1.14000.

Wood JC. Use of Magnetic Resonance Imaging to Monitor Iron Overload. Hematol Oncol Clin North Am. 2014;28(4):747–64. doi: 10.1016/j.hoc.2014.04.002.

De Sanctis V, Soliman AT, Tzoulis P, Daar S, Fiscina B, Kattamis C. Pancreatic changes affecting glucose homeostasis in transfusion dependent β-thalassemia (TDT): a short review. Acta Biomed. 2021; 92(3): e2021232. doi: 10.23750/abm.v92i3.11685.

Berdoukas V, Nord A, Carson S, et al. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol. 2013;88(11):E283–5. doi:10. 1002/ ajh.23543.

Youssef DM, Mohammad F, Fathy A, Aly Abdelbasset M. Assessment of Hepatic and Pancreatic Iron Overload in Pediatric Beta-Thalassemic Major Patients by T2* Weighted Gradient Echo Magnetic Resonance Imaging. ISRN Hematol. 2013; 2013: 496985. doi: 10.1155/2013/496985.

Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction. Cells. 2021;10(11):2841. doi: 10.3390/cells10112841.

Huang J, Shen J, Yang Q, et al. Quantification of pancreatic iron overload and fat infiltration and their correlation with glucose disturbance in pediatric thalassemia major patients. Quant Imaging Med Surg. 2021; 11(2):665–75. doi: 10.21037/qims-20-292.

Yasugi H, Mizumoto R, Sakurai H, Honjo I . Changes in carbohydrate metabolism and endocrine function of remnant pancreas after major pancreatic resection. Am J Surg. 1976;132 (5):577-580.doi:10.1016/0002-9610(76)-990346.

Meloni A, Pistoia L, Ricchi P, et al. Prospective changes of pancreatic iron in patients with thalassemia major and association with chelation therapy. Blood Adv. 2022;7(10):2237-40. doi: 10.1182/ bloodadvances. 20220 08 805.

How to Cite

1.
De Sanctis V, Daar S, Soliman A, Campisi S, Tzoulis P. Effects of iron- chelation therapy intensification on glucose homeostasis during 3-h oral glucose tolerance test (OGTT) in transfusion-dependent β-thalassemia patients (β-TDT). Acta Biomed [Internet]. [cited 2024 Jul. 20];95(4):e2024112. Available from: https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/16013

Issue

Section

HEMOGLOBINOPATHIES

How to Cite

1.
De Sanctis V, Daar S, Soliman A, Campisi S, Tzoulis P. Effects of iron- chelation therapy intensification on glucose homeostasis during 3-h oral glucose tolerance test (OGTT) in transfusion-dependent β-thalassemia patients (β-TDT). Acta Biomed [Internet]. [cited 2024 Jul. 20];95(4):e2024112. Available from: https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/16013