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Abstract 

Background. In order to help physicians and radiologists in diagnosing pneumonia, deep learning and 
other artificial intelligence methods have been described in several researches to solve this task. The main 
objective of the present study is to build a stacked hierarchical model by combining several models in order 
to increase the procedure accuracy. 
Methods. Firstly, the best convolutional network in terms of accuracy were evaluated and described. Later, 
a stacked hierarchical model was built by using the most relevant features extracted by the selected two 
models. Finally, over the stacked model with the best accuracy, a hierarchically dependent second stage 
model for inner-classification was built in order to detect both inflammation of the pulmonary alveolar space 
(lobar pneumonia) and interstitial tissue involvement (interstitial pneumonia).
Results. The study shows how the adopted staked model lead to a higher accuracy. Having a high accuracy 
on pneumonia detection and classification can be a paramount asset to treat patients in real health-care 
environments.
Conclusions. Despite some limits, our findings support the notion that deep learning methods can be used 
to simplify the diagnostic process and improve disease management. 
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(CNNs), as an example, have allowed 
researchers to obtain successful results 
in medical issues, such as breast or brain 
cancer detection, staging and classification 
based on X-ray images (9). In order to 
help field experts, such as physicians and 
radiologists, in diagnosing pneumonia, 
deep learning and other AI methods have 
been adopted to solve this task in several 
researches (9-13). 

Toğaçar et al. adopted a pre-trained 
CNN model with a similar layer structure 
for the pneumonia detection. Each model is 
separately applied to the dataset to extract the 
local discriminative features. By using the 
minimum redundancy maximum relevance 
(mRMR) algorithm, the dimension of the 
obtained deep features was reduced. These 
features were then combined to create a 
feature set given as input to several classifiers 
for the final classification (14). 

Rahman et al. utilized four pre-trained 
models for transfer learning management 
and for analysing their performances. The 
authors show that the CNN Densenet201 
model reaches the higher accuracy for the 
pneumonia detection (15).

Hammam et al compared six pre-trained 
models and then selected the best three 
of them in terms of accuracy to build a 
stacking ensemble deep learning model for 
an early prediction of COVID-19 diagnosis 
(16).

Based on this background, aims of this 
study are: i) to evaluate, select and describe 
the best convolutional network in terms of 
accuracy; ii) to build a stacked model by 
using the most relevant features extracted 
by the selected models; iii) to build, over 
the stacked model with the best accuracy, 
a hierarchically dependent second stage 
model for inner-classification in order to 
distinguish inflammation of the pulmonary 
alveolar space (lobar pneumonia) and 
interstitial tissue involvement (interstitial 
pneumonia). 

Introduction

Transmission of infectious diseases 
is, worldwide, one of the most important 
problems of public health; therefore, 
screening, assessment, and early diagnosis 
are considered of primary importance as 
control measures (1-4). After the spread of 
the novel coronavirus, also known as severe 
acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the problem became a global 
emergency. It is demonstrated that the spread 
of the disease may be efficiently controlled 
thanks to some health management choices, 
in addition to developing structured care (5, 
6). Besides that, due to the magnitude and the 
complexity of the problem, it is of paramount 
importance to develop early diagnosis 
systems not only based on laboratory tests, 
but also on alternative testing methods, such 
as diagnostic imaging (7, 8). 

Pneumonia is a lung inflammation caused 
by different pathogens. Viral pneumonia is 
generally of milder severity, and symptoms 
occur gradually; it can become complicated 
to diagnose if a bacterial infection develops 
at same time with viral pneumonia. On the 
other side, bacterial pneumonia can be more 
severe, and can eventually affect many lobes 
of the lung. Fungal pneumonia generally 
occurs in patients with weak immune 
systems. Such a pneumonia can be dangerous 
and requires time for regress (9). Chest 
X-ray (CXR) and computed tomography 
(CT) images are central in pneumonia 
diagnosis; however, it is fundamental to 
promptly analyse such images in order to 
obtain an early diagnosis. Motivated by this, 
researchers are globally taking initiatives to 
assist health practitioners with cutting-edge 
technology that also aims to detect and 
possibly prevent the further spread of the 
etiological agent (8).

Recently, a number of researchers have 
proposed different artificial intelligence 
(AI) based solutions for different medical 
problems. Convolutional neural networks 
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Methods

The study was performed using a publicly 
available dataset of validated CXR; the 
images (anterior-posterior projections) 
were selected from a retrospective cohort 
of patients from Guangzhou Women and 
Children’s Medical Center, Guangzhou 
(17). All CXR images were part of patients’ 
routine clinical care. All chest radiographs 
were initially screened for quality control 
by removing the low quality or unreadable 
scans. The diagnoses for the images were 
performed by two expert physicians 
before being used for training the artificial 
intelligence system. In order to account for 
any grading errors, the evaluation set was 
also checked by a third expert.

In this database, over a total of 5216 
images, 16 images for the validation set and 
624 for the test were contained. A validation 
set of just 16 images was not enough to 
perform a proper estimation of the model 
properties (16). To solve this problem, a 
further 80:20 split has been performed from 
the union of both the training and validation 
dataset. In this way, we have decreased the 
number of training sample but at the same 
time the amount of validation images has 
been increased.

In Figure 1, it is possible to see that the 
sample is highly imbalanced. Pneumonia 
samples (positive) have a much higher 
number than normal images. This means that 
much more samples of a class are present 
compared to the other. 

Therefore, a correction on the weights 
of the two classes was applied, reducing the 
imbalance between class 0 ( normal) and 
class 1 (pneumonia) weight. This correction 
is of a critical importance since in general, 
CNNs model works better when the training 
data are balanced. 

CXR images were resized to a dimension 
of 224x224x3, also to avoid overfitting. 
Transformations as shear, zoom, rotation, 
width shift, height shift, brightness and 
horizontal flip were applied as standard data 
augmentation technique. Furthermore, since 
we deal with a binary classification task, 
images mode was set to binary.

1. Theoretical outlines of the pre-trained 
model chosen 

First of all, the pre-trained models 
were selected on a previous experience by 
Hammam et al. (16). The best two models 
were chosen after an accuracy analysis 
with respect to other models, by using the 
above mentioned free available database 

Figure 1 - Distribution of positive and negative samples.
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of radiological images. MobileNet and 
DenseNet121 models were the best ones in 
terms of testing accuracy, as shown in Table 
1. Their features are summarized below, 
showing an overview of their architectures 
as well.

Table 1 - Testing accuracy of selected pre-trained mo-
dels.

Model Testing accuracy

MobileNet 0.916

DenseNet121 0.897

DenseNet169 0.893

InceptionResnetV2 0.879

Xception 0.825

MobileNetV2 0.806

InceptionV3 0.799

Resnet50 0.744

1a. MobileNet. Howard et al. proposed 
the MobileNet neural network in 2017 (18). 
The architecture of this network is based on 
separable convolutions. The latter are a form 
of factorized convolution which factorize a 
standard convolution in:

• depthwise convolution: applies a single 
filter to each input channel;

• pointwise convolution: applies a 1x1 
convolution to combine the outputs of the 
depthwise convolution.

Basically, in a standard convolution we 
both filter and combine inputs into a new set 
of outputs in one step, while the depthwise 
separable convolution splits this into two 
layers: 

• a separate layer for filtering;
• a separate layer for combining.
This is done to drastically reduce 

computation and model size. Finally, 
MobileNet uses both batch normalization 
and ReLU nonlinearities after all layers; 
moreover, a final average pooling reduces 
the spatial resolution to 1 before the fully 
connected layer. The latter does not present 
nonlinearities and feeds into a softmax.

1 b. DenseNet. Huang, et al. proposed 
the Densely CCN (DenseNet) as the next 
step to keep increasing the depth of deep 
convolutional networks (19). This solution 
was adopted firstly to solve the problems 
arising when the CNN go deeper, due to the 
fact that the path of information from the 
input layer until the output layer becomes 
so big that it vanishes before reaching the 
other side. 

By connecting every layer directly with 
each other, the authors managed to solve the 
problem ensuring maximum information and 
gradient flow. One of the major advantages 
of using such a network is the fact that the 
DenseNet network, through the feature reuse, 
exploits its potential by avoiding relying on 
an extremely deep or wide architecture.

Despite of the classic CNNs, DenseNet 
does not need to learn redundant features 
and by adopting the type of connection 
aforementioned it require fewer parameters. 
Furthermore, by having very narrow layers, 
the network adds just a small set of new 
feature-maps.

In training phase, the DenseNet network 
can solve the aforementioned problem 
regarding the flow of information and 
gradients by relying on the fact that each 
layer has direct access to the gradients from 
the loss function and the original input 
image.

Another important aspect that should be 
mentioned is that the DenseNet concatenate 
the output feature maps of the layer with 
the incoming feature maps; therefore, there 
is no sum between them. In any case, to 
perform this concatenation the feature 
maps must have the same size. To address 
this problem, the DenseNet introduce 
the concept of DenseBlocks. Basically, 
DenseBlocks are utilized to guarantee that 
the dimension of the feature maps remains 
constant within a block, but the number 
of filter changes between them. Between 
the DenseBlocks, particular type of layers 
(called transition layers) are inserted. These 
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layers perform the down sampling applying 
batch normalization, a 1x1 convolution and 
a 2x2 layers. The basic architecture is shown 
in Figure 2. 

After giving the basic theoretical outlines 
behind DenseNet networks, it is important to 
underline that the architecture implemented 
for our research is the DenseNet121 one. 

2. Building the Stacked Model
Mobilenet and DenseNet theoretical 

models were combined to create the stacked 
model in order to further improve the overall 
accuracy on predictions of the models as 
previously performed (16). The procedure 
foreseen to remove from both the pre-trained 
networks (MobileNet and DenseNet121) the 
last fully connected layer was implemented 
relying on the assumption that in the last 
convolutional layer the best weights for the 
feature detection are present. As a matter 
of fact, the last feature map should contain 
the most relevant extracted features for 
the final classification of the image. Based 
on this reasoning, we have improved the 
overall accuracy of both the best two models 
by merging the two last feature maps (one 
from each model) in a single flatten layer 
followed by two blocks composed by batch 
normalization, dense and dropout layers. As 
last procedure, the final sigmoid activation 
function was added to perform a binary 
classification.

The above assumptions ended up with 
a unique staked model that adopts the two 
pre-trained models as features extractors. 
This last third model receives the most 

relevant extracted feature to perform the final 
classification task. The overall architecture 
of the stacked model is shown in Figure 3.

3. Build, over the stacked model, a hierar-
chically dependent second stage for inner-
classification 

While the stacked model is able to 
classify pneumonia from the control 
group of healthy patients, this is not able 
to distinguish between lobar pneumonia 
and interstitial pneumonia. For this reason, 
a hierarchically dependent second stage 
model was added for inner-classification 
in order to distinguish the two kinds of 
pneumonia. This second stage started by the 
classification of pneumonia resulting by the 
use of the stacked model in order to obtain 
a more accurate classification (excluding, 
therefore, any classification interferences 
from the healthy control group). For this 
latter stage, a pre-trained DenseNet201 
model was used.

4. Training Phase 
The training phase is modelled by inserting 

EarlyStopping, ReduceLROnPlateau and 
ModelCheckpoint functions.

With EarlyStopping it is possible to monitor 
the validation loss to understand if the model 
is overfitting. On this view, EarlyStopping 
function is a callback allowing to specify the 
performance measure to monitor the trigger 
and stop the training process. To quantify a 
minimum improvement, a minimum delta 
was also stated. We always restored the 
model weights from the epoch with the best 

Figure 2 - The DenseNet architecture built by using DenseBlocks and transition Layers between them. The latter 
change feature-map sizes via convolution and pooling.
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value of the monitored quantity (validation 
loss in our case). 

ReduceLROnPlateau is a function useful 
to reduce slightly the learning rate as soon as 
the validation loss has stopped improving. 
Also in this case, a minimum delta is needed 

for ensuring the new optimum and to only 
focus on significant changes.

Finally, ModelCheckpoint is used to 
save the model which is considered the best 
according to the validation loss minimum 
value.

 Figure 3 - The stacked model architecture. MobileNet and DenseNet121 are utilized as feature extractors, while other 
layers along with the sigmoid activation function are added by hand.
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Results

Figure 4 shows the performance 
comparison on training and validation 
losses and accuracy between MobileNet, 
DenseNet121 and the stacked Model. The 
stacked model is able to further reduce 
validation loss, leading to better results. 
More precisely, MobileNet reached a training 
loss of 0.1666, a training accuracy of 0.9322, 
a validation loss of 0.2814 and validation 

accuracy of 0.8892. DenseNet121 reached a 
training loss of 0.2843, a training accuracy 
of 0.8807, a validation loss of 0.3346 and 
validation accuracy of 0.8481. Finally, the 
stacked model reached a training loss of 
0.1754, a training accuracy of 0.9289, a 
validation loss of 0.2250 and validation 
accuracy of 0.9154.

The expectations are satisfied by the test 
set as well. As a matter of fact, with the 
stacked model we reach a higher overall 

Figure 4 - The plots referring to a) MobileNet, b) DenseNet121 and c) Stacked model of the losses and accuracy on 
the training and validation sets. 
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accuracy and a lower loss on the test set, 
demonstrating a more robust and stable 
model. In Table 2 the final accuracy on the 
test set is shown.

To better understand how the three models 
performed in these binary classifications a 
comparison between true and predicted 
labels is shown in a heat map (Figure 5). This 
is done essentially to have an idea of how 
a good classification model should be, but 
also how it could be further improved when 
dealing with disease diagnosis, since this is 
sometimes crucial for patients’ life.

In order to distinguish between lobar and 
interstitial pneumonia, since our stacked 
model outperforms the two based models 
used, we use the latter as pneumonia 

classifier. The input that was previously 
classified as pneumonia (373), has been 
classified again with a DenseNet201 model, 
separately trained for this task. In figure 6 
the confusion matrix related to this second 
stage is shown. The second-stage classifier 
has reached an accuracy of 97.1% when 
distinguishing between lobar and interstitial 
pneumonia (table 3). Considering that the 
first stage classification (obtained with 
our stacked model) obtained a 93.7% of 
accuracy, and taking into account also the 
misclassifications with respect to the healthy 
control group, then the final accuracy of 
the overall hierarchical system classifier 
resulted 91%, as reported in both table 3 
and figure 7.

Table 2 - Comparison of Testing accuracy and Losses between Stacked model, MobileNet and DenseNet121

Model Testing accuracy Testing loss

Stacked model 0.935 0.196

MobileNet 0.916 0.225

DenseNet121 0.897 0.268

Figure 5 - The confusion matrix for each model containing true and predicted labels for both normal images (234) with 
class labelled with 0 and pneumonia images (390) labelled with 1. The confusion matrices compare the a) MobileNet, 
b) DenseNet121 and c) Stacked model.
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Figure 6 - The confusion matrix of the last stage for internal classification between Lobar and Interstitial pneumonia, 
respectively identified as class 1 and class 2. These latter stage have been applied for testing to the 373 pneumonia 
images successfully classified with the proposed stacked model containing true and predicted labels for both normal 
images (234) with class label 0 and pneumonia images (390) labelled with 1. 

Table 3 - Final results of the overall classifier, in terms of discrimination accuracy between lobar and interstitial 
pneumonia and the obtained overall accuracy taking into account the overall 2-stage classification.

2nd stage classifier accuracy Overall hierarchical system accuracy

97.1% 91.0%

Figure 7 - The overall confusion matrix of the entire hierarchical system between the healthy control group (identified 
with the label 0), and the lobar or interstitial pneumonia, respectively identified as class 1 and class 2.



653Stacked convolutional models for automatic pneumonia diagnosis

Discussion and Conclusions

Pneumonia is a common respiratory 
infection, affecting approximately 450 
million people a year and occurring in all 
parts of the world. Laboratory methods are 
actually the gold standard to confirm a lung 
infection and to try to identify the type of 
organism causing the pneumonia.

The real-time PCR process is one of 
the fastest diagnostic methods, and it takes 
approximately 4–6 hours to obtain the test 
results (8). This can cause a diagnosis delay 
at early stages, worsening the prognosis of 
the pneumonia and, in some cases, allowing 
the contagion of other people inadvertently. 
Therefore, it is necessary to perform research 
and to develop new methods that help to 
provide computer-aided diagnosis to reduce 
pneumonia-related mortality or infection 
diffusion, especially in the developing 
countries (9). To shorten the diagnosis, 
radiology is fundamental in confirming the 
disease and monitoring its progression over 
time. Furthermore, computational models 
in the area of artificial intelligence and 
deep learning have been efficiently used 
in solving problems related to medical 
imaging (9, 11). Our study reports the 
results of the performance evaluation of 
the most used models, demonstrating that 
MobileNet and DenseNet121 showed the 
highest accuracy. In particular, DenseNet-
121 is a model already pretrained, Ho et 
al (20) used a pretrained DenseNet121 for 
the classification of 14 thoracic diseases, 
and Chouhan et al (9) suggested a novel 
deep learning framework for the detection 
of pneumonia using the concept of transfer 
learning. In this approach, five different 
models, including DenseNet121, were 
analysed and combined. 

In our study, the accuracy further increases 
when these two models are combined in a 
staked one, able to further reduce validation 
loss, leading to better results. Our second 
stage accuracy level is similar to the one 

of Chouhan et al (9). Both the studies used 
the same free available database of images 
(17).

Nevertheless, it should be noted that image 
processing supported by the application of AI 
procedures may be a technology providing 
fast and accurate results, but, considering 
that it deals with patients’ lives, the highest 
accuracy of the model must be ensured. 

The authors are aware of some limits 
of the study. It is demonstrated that several 
protocols used for automatic pneumonia 
diagnosis directly on X-Ray images are not 
reliable and that the neural networks are 
learning patterns in the dataset that are not 
correlated to the presence of pneumonia (21). 
These protocols might be biased and may 
learn to predict features by relying more on 
the source dataset than on relevant medical 
information (21). Therefore, creating a 
reliable testing protocol is a challenging task. 
In fact, even if our model performance was 
good, still 43 samples resulted incorrectly 
classified: 26 for false normal images and 
17 for false pneumonia images. This could 
lead, in a real health-care environment, to 
mistakenly classify a patient as healthy or 
sick. In this research, we used two models, 
MobileNet and DenseNet121, as feature 
extractors, but the stacked model is more 
performant than the two chosen models, 
further increasing the accuracy.

Despite these limits, and the small and 
imbalanced dataset, the results obtained 
may be considered overall satisfactory, 
showing an efficient and robust model. Still, 
introducing a better and more balanced 
dataset could further improve the model’s 
performances, resulting in more precise and 
accurate outcomes.

In conclusion, the hierarchical stacked 
model designed in the present study seems 
able to detect pneumonia with an accuracy 
higher than the single models; moreover, 
the accuracy is high, especially when 
distinguishing between lobar and interstitial 
pneumonia. Our findings support the notion 
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that deep learning methods can be used to 
simplify the diagnostic process and improve 
disease management, highly contributing to 
public health purposes. However, it would 
be helpful to have a larger dataset, especially 
regarding the data validation process. In 
addition, it should be taken into account the 
possible misclassification (21). 

Riassunto

Modelli convoluzionali sovrapposti per il rileva-
mento automatico di polmonite da rx torace, nuove 
strategie per la sanità pubblica

Introduzione. Al fine di supportare medici ed, in 
particolare, specialisti in radiologia nella diagnosi di 
polmonite, diversi sistemi di intelligenza artificiale sono 
stati descritti in letteratura.

Metodi. In primo luogo sono stati identificati i modelli 
convoluzionali più performanti in termini di accuratezza 
e successivamente descritti. Utilizzando le più rilevanti 
caratteristiche estratte dai due modelli più performanti è 
stato successivamente costruito un modello integrato. In 
fine, su questo modello integrato è stato impostato un suc-
cessivo modello gerarchico per la sotto-classificazione 
delle polmoniti in lobari (infiammazione polmonare dello 
spazio alveolare) e interstiziali (infiammazione polmona-
re con interessamento del tessuto interstiziale).

Risultati. I risultati hanno mostrato che il modello 
integrato presenta una accuratezza maggiore dei due 
modelli di origine. Tale caratteristica applicata alla 
diagnostica automatica delle polmoniti può risultare di 
fondamentale importanza nella gestione dei pazienti in 
un’ottica di sanità pubblica.

Conclusioni. Nonostante alcuni limiti, il presente 
studio supporta le evidenze scientifiche che mostrano 
come sistemi di intelligenza artificiale possano essere 
utili per semplificare i processi diagnostici e migliorare 
il management di alcune patologie.

References

1.	 Napoli C, Dente MG, Kärki T, Riccardo F, Rossi 
P, Declich S; Network for the Control of Cross-
Border Health Threats in the Mediterranean 
Basin and Black Sea. Screening for Infectious 
Diseases among Newly Arrived Migrants: Ex-
periences and Practices in Non-EU Countries 
of the Mediterranean Basin and Black Sea. Int J 

Environ Res Public Health. 2015 Dec 8; 12(12): 
15550-8. doi: 10.3390/ijerph121215002.

2.	 Napoli C, Riccardo F, Declich S, et al. An early 
warning system based on syndromic surveil-
lance to detect potential health emergencies 
among migrants: results of a two-year experi-
ence in Italy. Int J Environ Res Public Health. 
2014 Aug 20; 11(8): 8529-41. doi: 10.3390/
ijerph110808529.

3.	 Illari S I, Russo S, Avanzato R, Napoli C. A 
cloud-oriented architecture for the remote as-
sessment and follow-up of hospitalized patients. 
In: SYSTEM 2020: 5th Symposium for Young 
Scientists in Technology, Engineering and 
Mathematics, May 20 2020. CEUR Workshop 
Proceedings 2020; 2694: 29-35.

4.	 Napoli C, Salcuni P, Pompa MG, Declich S, 
Rizzo C. Estimated imported infections of 
Chikungunya and Dengue in Italy, 2008 to 2011. 
J Travel Med. 2012 Sep-Oct; 19(5): 294-7. doi: 
10.1111/j.1708-8305.2012.00640.x. Epub 2012 
Aug 8.

5.	 Capalbo C, Aceti A, Simmaco M, et al. The 
Exponential Phase of the Covid-19 Pandemic 
in Central Italy: An Integrated Care Pathway. 
Int J Environ Res Public Health. 2020 May 27; 
17(11): 3792. doi: 10.3390/ijerph17113792.

6.	 Roma P, Monaro M, Muzi L, et al. How to 
Improve Compliance with Protective Health 
Measures during the COVID-19 Outbreak: Test-
ing a Moderated Mediation Model and Machine 
Learning Algorithms. Int J Environ Res Public 
Health. 2020 Oct 4; 17(19): 7252. doi: 10.3390/
ijerph17197252.

7.	 Capizzi G, Lo Sciuto G, Napoli C, Połap D, 
Woźniak M. Small lung nodules detection based 
on fuzzy-logic and probabilistic neural network 
with bioinspired reinforcement learning. IEEE 
Transactions on Fuzzy Systems 2020 June; 28(6): 
1178-89. doi: 10.1109/TFUZZ.2019.2952831.

8.	 Shorfuzzaman M, Masud M, Alhumyani H, 
Anand D, Singh A. Artificial Neural Network-
Based Deep Learning Model for COVID-19 
Patient Detection Using X-Ray Chest Images. 
J Healthc Eng 2021 Jun 5; 2021: 5513679. doi: 
10.1155/2021/5513679.

9.	 Chouhan V, Singh SK, Khamparia A, et al. 
A novel transfer learning based approach for 
pneumonia detection in chest x-ray images. Appl 
Sci. 2020; 10(2): 559. https://doi.org/10.3390/
app10020559.

10.	 Woźniak M, Połap D, Napoli C, Tramontana 



655Stacked convolutional models for automatic pneumonia diagnosis

E. Graphic object feature extraction system 
based on cuckoo search algorithm. Expert Sys-
tems with Applications 2016; 66: 20-31. doi: 
10.1016/j.eswa.2016.08.068.

11.	 Oh Y, Park S, Ye JC. Deep learning COVID-19 
features on CXR using limited training data 
sets. IEEE Trans Med Imaging 2020 Aug; 39(8): 
2688-700. doi: 10.1109/TMI.2020.2993291. 
Epub 2020 May 8.

12.	 Jain R, Gupta M, Taneja S, Hemanth DJ. 
Deep learning-based detection and analysis of 
COVID-19 on chest x-ray images. Appl Intell. 
2021; 51: 1690-700. Epub 2020 Oct 9. https://
doi.org/10.1007/s10489-020-01902-1.

13.	 Pereira R M, Bertolini D, Teixeira LO, Silla 
CN, Costa YMG. COVID-19 identification in 
chest x-ray images on flat and hierarchical clas-
sification scenarios. Comput Methods Programs 
Biomed. 2020 Oct; 194: 105532. doi: 10.1016/j.
cmpb.2020.105532. Epub 2020 May 8.

14.	 Toğaçar M, Ergen B, Cömert Z, Özyurt F. A 
Deep Feature Learning Model for Pneumonia 
Detection Applying a Combination of mRMR 
Feature Selection and Machine Learning Mod-
els. IRBM. 2020 Aug; 41(4): 212-22. https://doi.
org/10.1016/j.irbm.2019.10.006.

15.	 Rahman T, Chowdhury MEH, Khandakar A, et 
al. Transfer learning with deep Convolutional 
Neural Network (CNN) for pneumonia detection 
using chest X-ray. Appl Sci. 2020; 10(9): 3233. 
https://doi.org/10.3390/app10093233.

16.	 Hammam AA, Elmousalami HH, Hassanien AE. 
Stacking Deep Learning for Early COVID-19 
Vision Diagnosis. In: Hassanien AE, Dey N, 
Elghamrawy S, eds. Big Data Analytics and 
Artificial Intelligence Against COVID-19: In-
novation Vision and Approach. Studies in Big 
Data. Cham: Springer, 2020: 297-307.

17.	 Kermany DS, Goldbaum M, Cai W, et al. 
Identifying Medical Diagnoses and Treatable 
Diseases by Image-Based Deep Learning. Cell. 
2018 Feb; 172(5): 1122-31. doi: 10.1016/j.cell. 
2018.02.010.

18.	 Howard AG, Zhu M, Chen B, et al. Mo-
bilenets: Efficient convolutional neural networks 
for mobile vision applications. arXiv 2017; 
1704.04861.

19.	 Huang G, Liu Z, van der Maaten L, Weinberger 
KQ. Densely Connected Convolutional Net-
works. Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR), Honolulu, HI, USA, 21-26 July 
2017. IEEE, 2017: 4700-8. doi: 10.1109/
CVPR.2017.243.

20.	 Ho TKK, Gwak J. Multiple feature integration 
for classification of thoracic disease in chest ra-
diography. Appl Sci. 2019; 9(19): 4130. https://
doi.org/10.3390/app9194130.

21.	 Maguolo G, Nanni L. A critic evaluation of 
methods for COVID-19 automatic detection 
from X-ray images. Inf Fusion. 2021 Dec; 76: 
1-7. doi: 10.1016/j.inffus.2021.04.008. Epub 
2021 Apr 30.

Corresponding author: Enrico Bertamino, MD, Sant’Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, 
Italy 
e-mail: ebertamino@ospedalesantandrea.it


