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Hierarchical convolutional models for automatic pneu-
monia diagnosis based on X-ray images: new strategies
in public health
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Abstract

Background. In order to help physicians and radiologists in diagnosing pneumonia, deep learning and
other artificial intelligence methods have been described in several researches to solve this task. The main
objective of the present study is to build a stacked hierarchical model by combining several models in order
to increase the procedure accuracy.

Methods. Firstly, the best convolutional network in terms of accuracy were evaluated and described. Later,
a stacked hierarchical model was built by using the most relevant features extracted by the selected two
models. Finally, over the stacked model with the best accuracy, a hierarchically dependent second stage
model for inner-classification was built in order to detect both inflammation of the pulmonary alveolar space
(lobar pneumonia) and interstitial tissue involvement (interstitial pneumonia).

Results. The study shows how the adopted staked model lead to a higher accuracy. Having a high accuracy
on pneumonia detection and classification can be a paramount asset to treat patients in real health-care
environments.

Conclusions. Despite some limits, our findings support the notion that deep learning methods can be used
to simplify the diagnostic process and improve disease management.
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Introduction

Transmission of infectious diseases
is, worldwide, one of the most important
problems of public health; therefore,
screening, assessment, and early diagnosis
are considered of primary importance as
control measures (1-4). After the spread of
the novel coronavirus, also known as severe
acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the problem became a global
emergency. It is demonstrated that the spread
of the disease may be efficiently controlled
thanks to some health management choices,
in addition to developing structured care (5,
6). Besides that, due to the magnitude and the
complexity of the problem, it is of paramount
importance to develop early diagnosis
systems not only based on laboratory tests,
but also on alternative testing methods, such
as diagnostic imaging (7, 8).

Pneumonia is a lung inflammation caused
by different pathogens. Viral pneumonia is
generally of milder severity, and symptoms
occur gradually; it can become complicated
to diagnose if a bacterial infection develops
at same time with viral pneumonia. On the
other side, bacterial pneumonia can be more
severe, and can eventually affect many lobes
of the lung. Fungal pneumonia generally
occurs in patients with weak immune
systems. Such a pneumonia can be dangerous
and requires time for regress (9). Chest
X-ray (CXR) and computed tomography
(CT) images are central in pneumonia
diagnosis; however, it is fundamental to
promptly analyse such images in order to
obtain an early diagnosis. Motivated by this,
researchers are globally taking initiatives to
assist health practitioners with cutting-edge
technology that also aims to detect and
possibly prevent the further spread of the
etiological agent (8).

Recently, a number of researchers have
proposed different artificial intelligence
(AI) based solutions for different medical
problems. Convolutional neural networks

(CNNs), as an example, have allowed
researchers to obtain successful results
in medical issues, such as breast or brain
cancer detection, staging and classification
based on X-ray images (9). In order to
help field experts, such as physicians and
radiologists, in diagnosing pneumonia,
deep learning and other Al methods have
been adopted to solve this task in several
researches (9-13).

Togacar et al. adopted a pre-trained
CNN model with a similar layer structure
for the pneumonia detection. Each model is
separately applied to the dataset to extract the
local discriminative features. By using the
minimum redundancy maximum relevance
(mRMR) algorithm, the dimension of the
obtained deep features was reduced. These
features were then combined to create a
feature set given as input to several classifiers
for the final classification (14).

Rahman et al. utilized four pre-trained
models for transfer learning management
and for analysing their performances. The
authors show that the CNN Densenet201
model reaches the higher accuracy for the
pneumonia detection (15).

Hammam et al compared six pre-trained
models and then selected the best three
of them in terms of accuracy to build a
stacking ensemble deep learning model for
an early prediction of COVID-19 diagnosis
(16).

Based on this background, aims of this
study are: i) to evaluate, select and describe
the best convolutional network in terms of
accuracy; ii) to build a stacked model by
using the most relevant features extracted
by the selected models; iii) to build, over
the stacked model with the best accuracy,
a hierarchically dependent second stage
model for inner-classification in order to
distinguish inflammation of the pulmonary
alveolar space (lobar pneumonia) and
interstitial tissue involvement (interstitial
pneumonia).
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Methods

The study was performed using a publicly
available dataset of validated CXR; the
images (anterior-posterior projections)
were selected from a retrospective cohort
of patients from Guangzhou Women and
Children’s Medical Center, Guangzhou
(17). All CXR images were part of patients’
routine clinical care. All chest radiographs
were initially screened for quality control
by removing the low quality or unreadable
scans. The diagnoses for the images were
performed by two expert physicians
before being used for training the artificial
intelligence system. In order to account for
any grading errors, the evaluation set was
also checked by a third expert.

In this database, over a total of 5216
images, 16 images for the validation set and
624 for the test were contained. A validation
set of just 16 images was not enough to
perform a proper estimation of the model
properties (16). To solve this problem, a
further 80:20 split has been performed from
the union of both the training and validation
dataset. In this way, we have decreased the
number of training sample but at the same
time the amount of validation images has
been increased.
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In Figure 1, it is possible to see that the
sample is highly imbalanced. Pneumonia
samples (positive) have a much higher
number than normal images. This means that
much more samples of a class are present
compared to the other.

Therefore, a correction on the weights
of the two classes was applied, reducing the
imbalance between class 0 ( normal) and
class 1 (pneumonia) weight. This correction
is of a critical importance since in general,
CNNs model works better when the training
data are balanced.

CXR images were resized to a dimension
of 224x224x3, also to avoid overfitting.
Transformations as shear, zoom, rotation,
width shift, height shift, brightness and
horizontal flip were applied as standard data
augmentation technique. Furthermore, since
we deal with a binary classification task,
images mode was set to binary.

1. Theoretical outlines of the pre-trained
model chosen

First of all, the pre-trained models
were selected on a previous experience by
Hammam et al. (16). The best two models
were chosen after an accuracy analysis
with respect to other models, by using the
above mentioned free available database
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Figure 1 - Distribution of positive and negative samples.
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of radiological images. MobileNet and
DenseNet121 models were the best ones in
terms of testing accuracy, as shown in Table
1. Their features are summarized below,
showing an overview of their architectures
as well.

Table 1 - Testing accuracy of selected pre-trained mo-
dels.

Model Testing accuracy
MobileNet 0.916
DenseNet121 0.897
DenseNet169 0.893
InceptionResnetV?2 0.879
Xception 0.825
MobileNetV2 0.806
InceptionV3 0.799
Resnet50 0.744

la. MobileNet. Howard et al. proposed
the MobileNet neural network in 2017 (18).
The architecture of this network is based on
separable convolutions. The latter are a form
of factorized convolution which factorize a
standard convolution in:

* depthwise convolution: applies a single
filter to each input channel;

* pointwise convolution: applies a 1x1
convolution to combine the outputs of the
depthwise convolution.

Basically, in a standard convolution we
both filter and combine inputs into a new set
of outputs in one step, while the depthwise
separable convolution splits this into two
layers:

* a separate layer for filtering;

* a separate layer for combining.

This is done to drastically reduce
computation and model size. Finally,
MobileNet uses both batch normalization
and ReLU nonlinearities after all layers;
moreover, a final average pooling reduces
the spatial resolution to 1 before the fully
connected layer. The latter does not present
nonlinearities and feeds into a softmax.

1 b. DenseNet. Huang, et al. proposed
the Densely CCN (DenseNet) as the next
step to keep increasing the depth of deep
convolutional networks (19). This solution
was adopted firstly to solve the problems
arising when the CNN go deeper, due to the
fact that the path of information from the
input layer until the output layer becomes
so big that it vanishes before reaching the
other side.

By connecting every layer directly with
each other, the authors managed to solve the
problem ensuring maximum information and
gradient flow. One of the major advantages
of using such a network is the fact that the
DenseNet network, through the feature reuse,
exploits its potential by avoiding relying on
an extremely deep or wide architecture.

Despite of the classic CNNs, DenseNet
does not need to learn redundant features
and by adopting the type of connection
aforementioned it require fewer parameters.
Furthermore, by having very narrow layers,
the network adds just a small set of new
feature-maps.

In training phase, the DenseNet network
can solve the aforementioned problem
regarding the flow of information and
gradients by relying on the fact that each
layer has direct access to the gradients from
the loss function and the original input
image.

Another important aspect that should be
mentioned is that the DenseNet concatenate
the output feature maps of the layer with
the incoming feature maps; therefore, there
is no sum between them. In any case, to
perform this concatenation the feature
maps must have the same size. To address
this problem, the DenseNet introduce
the concept of DenseBlocks. Basically,
DenseBlocks are utilized to guarantee that
the dimension of the feature maps remains
constant within a block, but the number
of filter changes between them. Between
the DenseBlocks, particular type of layers
(called transition layers) are inserted. These
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Figure 2 - The DenseNet architecture built by using DenseBlocks and transition Layers between them. The latter

change feature-map sizes via convolution and pooling.

layers perform the down sampling applying
batch normalization, a 1x1 convolution and
a 2x2 layers. The basic architecture is shown
in Figure 2.

After giving the basic theoretical outlines
behind DenseNet networks, it is important to
underline that the architecture implemented
for our research is the DenseNet121 one.

2. Building the Stacked Model

Mobilenet and DenseNet theoretical
models were combined to create the stacked
model in order to further improve the overall
accuracy on predictions of the models as
previously performed (16). The procedure
foreseen to remove from both the pre-trained
networks (MobileNet and DenseNet121) the
last fully connected layer was implemented
relying on the assumption that in the last
convolutional layer the best weights for the
feature detection are present. As a matter
of fact, the last feature map should contain
the most relevant extracted features for
the final classification of the image. Based
on this reasoning, we have improved the
overall accuracy of both the best two models
by merging the two last feature maps (one
from each model) in a single flatten layer
followed by two blocks composed by batch
normalization, dense and dropout layers. As
last procedure, the final sigmoid activation
function was added to perform a binary
classification.

The above assumptions ended up with
a unique staked model that adopts the two
pre-trained models as features extractors.
This last third model receives the most

relevant extracted feature to perform the final
classification task. The overall architecture
of the stacked model is shown in Figure 3.

3. Build, over the stacked model, a hierar-
chically dependent second stage for inner-
classification

While the stacked model is able to
classify pneumonia from the control
group of healthy patients, this is not able
to distinguish between lobar pneumonia
and interstitial pneumonia. For this reason,
a hierarchically dependent second stage
model was added for inner-classification
in order to distinguish the two kinds of
pneumonia. This second stage started by the
classification of pneumonia resulting by the
use of the stacked model in order to obtain
a more accurate classification (excluding,
therefore, any classification interferences
from the healthy control group). For this
latter stage, a pre-trained DenseNet201
model was used.

4. Training Phase

The training phase is modelled by inserting
EarlyStopping, ReduceLROnPlateau and
ModelCheckpoint functions.

With EarlyStopping itis possible to monitor
the validation loss to understand if the model
is overfitting. On this view, EarlyStopping
function is a callback allowing to specify the
performance measure to monitor the trigger
and stop the training process. To quantify a
minimum improvement, a minimum delta
was also stated. We always restored the
model weights from the epoch with the best
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Figure 3 - The stacked model architecture. MobileNet and DenseNet121 are utilized as feature extractors, while other
layers along with the sigmoid activation function are added by hand.

value of the monitored quantity (validation
loss in our case).

Reducel ROnPlateau is a function useful
to reduce slightly the learning rate as soon as
the validation loss has stopped improving.
Also in this case, a minimum delta is needed

for ensuring the new optimum and to only
focus on significant changes.

Finally, ModelCheckpoint is used to
save the model which is considered the best
according to the validation loss minimum
value.
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Results accuracy of 0.8892. DenseNet121 reached a
training loss of 0.2843, a training accuracy
Figure 4 shows the performance  of 0.8807, a validation loss of 0.3346 and
comparison on training and validation  validation accuracy of 0.8481. Finally, the
losses and accuracy between MobileNet,  stacked model reached a training loss of
DenseNet121 and the stacked Model. The  0.1754, a training accuracy of 0.9289, a
stacked model is able to further reduce  validation loss of 0.2250 and validation
validation loss, leading to better results. accuracy of 0.9154.
More precisely, MobileNet reached a training The expectations are satisfied by the test
loss of 0.1666, a training accuracy of 0.9322, set as well. As a matter of fact, with the
a validation loss of 0.2814 and validation  stacked model we reach a higher overall

Model accuracy Model loss
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c) Stacked Model Accuracy and Loss on Training and Validation sets

Figure 4 - The plots referring to a) MobileNet, b) DenseNet121 and c) Stacked model of the losses and accuracy on
the training and validation sets.



Stacked convolutional models for automatic pneumonia diagnosis

Table 2 - Comparison of Testing accuracy and Losses between Stacked model, MobileNet and DenseNet121
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Model Testing accuracy Testing loss
Stacked model 0.935 0.196
MobileNet 0.916 0.225
DenseNet121 0.897 0.268

accuracy and a lower loss on the test set,
demonstrating a more robust and stable
model. In Table 2 the final accuracy on the
test set is shown.

To better understand how the three models
performed in these binary classifications a
comparison between true and predicted
labels is shown in a heat map (Figure 5). This
is done essentially to have an idea of how
a good classification model should be, but
also how it could be further improved when
dealing with disease diagnosis, since this is
sometimes crucial for patients’ life.

In order to distinguish between lobar and
interstitial pneumonia, since our stacked
model outperforms the two based models
used, we use the latter as pneumonia

ajMobileNel heatmap

b)DenseNetl2] heatmap

classifier. The input that was previously
classified as pneumonia (373), has been
classified again with a DenseNet201 model,
separately trained for this task. In figure 6
the confusion matrix related to this second
stage is shown. The second-stage classifier
has reached an accuracy of 97.1% when
distinguishing between lobar and interstitial
pneumonia (table 3). Considering that the
first stage classification (obtained with
our stacked model) obtained a 93.7% of
accuracy, and taking into account also the
misclassifications with respect to the healthy
control group, then the final accuracy of
the overall hierarchical system classifier
resulted 91%, as reported in both table 3
and figure 7.

Eed dakar Freduted labe

EiStacked Model heatmap

Figure 5 - The confusion matrix for each model containing true and predicted labels for both normal images (234) with
class labelled with 0 and pneumonia images (390) labelled with 1. The confusion matrices compare the a) MobileNet,

b) DenseNet121 and c) Stacked model.
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Figure 6 - The confusion matrix of the last stage for internal classification between Lobar and Interstitial pneumonia,
respectively identified as class 1 and class 2. These latter stage have been applied for testing to the 373 pneumonia
images successfully classified with the proposed stacked model containing true and predicted labels for both normal
images (234) with class label 0 and pneumonia images (390) labelled with 1.

Table 3 - Final results of the overall classifier, in terms of discrimination accuracy between lobar and interstitial
pneumonia and the obtained overall accuracy taking into account the overall 2-stage classification.

2™ stage classifier accuracy Overall hierarchical system accuracy
97.1% 91.0%

Figure 7 - The overall confusion matrix of the entire hierarchical system between the healthy control group (identified
with the label 0), and the lobar or interstitial pneumonia, respectively identified as class 1 and class 2.
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Discussion and Conclusions

Pneumonia is a common respiratory
infection, affecting approximately 450
million people a year and occurring in all
parts of the world. Laboratory methods are
actually the gold standard to confirm a lung
infection and to try to identify the type of
organism causing the pneumonia.

The real-time PCR process is one of
the fastest diagnostic methods, and it takes
approximately 4—6 hours to obtain the test
results (8). This can cause a diagnosis delay
at early stages, worsening the prognosis of
the pneumonia and, in some cases, allowing
the contagion of other people inadvertently.
Therefore, it is necessary to perform research
and to develop new methods that help to
provide computer-aided diagnosis to reduce
pneumonia-related mortality or infection
diffusion, especially in the developing
countries (9). To shorten the diagnosis,
radiology is fundamental in confirming the
disease and monitoring its progression over
time. Furthermore, computational models
in the area of artificial intelligence and
deep learning have been efficiently used
in solving problems related to medical
imaging (9, 11). Our study reports the
results of the performance evaluation of
the most used models, demonstrating that
MobileNet and DenseNetl21 showed the
highest accuracy. In particular, DenseNet-
121 is a model already pretrained, Ho et
al (20) used a pretrained DenseNetl21 for
the classification of 14 thoracic diseases,
and Chouhan et al (9) suggested a novel
deep learning framework for the detection
of pneumonia using the concept of transfer
learning. In this approach, five different
models, including DenseNetl21, were
analysed and combined.

In our study, the accuracy further increases
when these two models are combined in a
staked one, able to further reduce validation
loss, leading to better results. Our second
stage accuracy level is similar to the one

of Chouhan et al (9). Both the studies used
the same free available database of images
(17).

Nevertheless, it should be noted that image
processing supported by the application of Al
procedures may be a technology providing
fast and accurate results, but, considering
that it deals with patients’ lives, the highest
accuracy of the model must be ensured.

The authors are aware of some limits
of the study. It is demonstrated that several
protocols used for automatic pneumonia
diagnosis directly on X-Ray images are not
reliable and that the neural networks are
learning patterns in the dataset that are not
correlated to the presence of pneumonia (21).
These protocols might be biased and may
learn to predict features by relying more on
the source dataset than on relevant medical
information (21). Therefore, creating a
reliable testing protocol is a challenging task.
In fact, even if our model performance was
good, still 43 samples resulted incorrectly
classified: 26 for false normal images and
17 for false pneumonia images. This could
lead, in a real health-care environment, to
mistakenly classify a patient as healthy or
sick. In this research, we used two models,
MobileNet and DenseNetl21, as feature
extractors, but the stacked model is more
performant than the two chosen models,
further increasing the accuracy.

Despite these limits, and the small and
imbalanced dataset, the results obtained
may be considered overall satisfactory,
showing an efficient and robust model. Still,
introducing a better and more balanced
dataset could further improve the model’s
performances, resulting in more precise and
accurate outcomes.

In conclusion, the hierarchical stacked
model designed in the present study seems
able to detect pneumonia with an accuracy
higher than the single models; moreover,
the accuracy is high, especially when
distinguishing between lobar and interstitial
pneumonia. Our findings support the notion
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that deep learning methods can be used to
simplify the diagnostic process and improve
disease management, highly contributing to
public health purposes. However, it would
be helpful to have a larger dataset, especially
regarding the data validation process. In
addition, it should be taken into account the
possible misclassification (21).

Riassunto

Modelli convoluzionali sovrapposti per il rileva-
mento automatico di polmonite da rx torace, nuove
strategie per la sanita pubblica

Introduzione. Al fine di supportare medici ed, in
particolare, specialisti in radiologia nella diagnosi di
polmonite, diversi sistemi di intelligenza artificiale sono
stati descritti in letteratura.

Metodi. In primo luogo sono stati identificati i modelli
convoluzionali piu performanti in termini di accuratezza
e successivamente descritti. Utilizzando le pil rilevanti
caratteristiche estratte dai due modelli piu performanti &
stato successivamente costruito un modello integrato. In
fine, su questo modello integrato ¢ stato impostato un suc-
cessivo modello gerarchico per la sotto-classificazione
delle polmoniti in lobari (inflammazione polmonare dello
spazio alveolare) e interstiziali (inflammazione polmona-
re con interessamento del tessuto interstiziale).

Risultati. I risultati hanno mostrato che il modello
integrato presenta una accuratezza maggiore dei due
modelli di origine. Tale caratteristica applicata alla
diagnostica automatica delle polmoniti puo risultare di
fondamentale importanza nella gestione dei pazienti in
un’ottica di sanita pubblica.

Conclusioni. Nonostante alcuni limiti, il presente
studio supporta le evidenze scientifiche che mostrano
come sistemi di intelligenza artificiale possano essere
utili per semplificare i processi diagnostici e migliorare
il management di alcune patologie.
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