Incidence, management and prognosis of new-onset sarcoidosis post COVID-19 infection

Main Article Content

Oliver Vij
Mrinalini Dey
Kirsty Morrison
Koushan Kouranloo

Keywords

COVID-19, SARS-Cov-2, autoimmune disease, Sarcoidosis

Abstract

Background and aim: SARS-CoV-2 infection has been linked to hyperinflammation in multiple organs with a potential mechanistic link with resulting autoimmunity. There have been reports of many inflammatory complications following COVID-19, including sarcoidosis. A literature review on new-onset sarcoidosis following COVID-19 is lacking. We evaluated potential associations between COVID-19 and development of new-onset sarcoidosis. Methods: Articles discussing biopsy-proven sarcoidosis after confirmed COVID-19 infection, published 1956 until April 2023, were included. All article types were deemed eligible except opinion and review articles. Results: A pooled total of 15 patients with new-onset diagnosis of sarcoidosis after COVID-19 infection were included, 45.5% female, mean age 46.1 years (standard deviation 14.7) at onset of sarcoidosis. Patients were from: Europe (n=11); North America (n=2); South America (n=1); Asia (n=1). The mean time between COVID-19 infection and diagnosis of sarcoidosis was 56.3 days, although this ranged from 10 to 140 days. Organ systems predominantly affected by sarcoidosis were: pulmonary (n=11); cutaneous (n=3); cardiac (n=2); ocular (n=1); systemic (n=1) (with overlapping features in certain patients). Sarcoidosis was treated as follows: glucocorticoids (n=8); azathioprine (n=1); cardiac re-synchronisation therapy (n=1); heart transplant (n=1). All patients were reported to have survived, with one requiring intensive care admission. Conclusions: Our result suggests there is a potential link between COVID-19 and new-onset sarcoidosis. The potential mechanism for this is through cytokine mediated immune modulation in COVID-19 infection. Obtaining a tissue sample remains key in confirming the diagnosis of sarcoidosis and this may be delayed during active COVID-19 infection.

Abstract 583 | PDF Downloads 360

References

1. Matta S, Chopra KK, Arora VK. Morbidity and mortality trends of Covid 19 in top 10 countries. Indian J Tuberc. 2020 Dec;67(4S):S167–72. doi: 10.1016/j.ijtb.2020.09.031.
2. Elrobaa IH, New KJ. COVID-19: Pulmonary and Extra Pulmonary Manifestations. Front Public Health. 2021 Sep 28;9:711616. doi: 10.3389/fpubh.2021.711616.
3. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med. 2020 Oct;26(10):1636–43. doi: 10.1038/s41591-020-1051-9.
4. Caso F, Costa L, Ruscitti P, et al. Could Sars-coronavirus-2 trigger autoimmune and/or autoinflammatory mechanisms in genetically predisposed subjects? Autoimmun Rev. 2020 May;19(5):102524. doi: 10.1016/j.autrev.2020.102524.
5. Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases. Curr Opin Rheumatol. 2021 Mar 1;33(2):155–62. doi: 10.1097/BOR.0000000000000776.
6. Saad MA, Alfishawy M, Nassar M, Mohamed M, Esene IN, Elbendary A. COVID-19 and Autoimmune Diseases: A Systematic Review of Reported Cases. Curr Rheumatol Rev. 2021;17(2):193–204. doi: 10.2174/1573397116666201029155856.
7. Kouranloo K, Dey M, Elwell H, Nune A. A systematic review of the incidence, management and prognosis of new-onset autoimmune connective tissue diseases after COVID-19. Rheumatol Int. 2023 Jul 1;43(7):1221–43. doi: 10.1007/s00296-023-05283-9.
8. Zhao M, Tian C, Cong S, Di X, Wang K. From COVID-19 to Sarcoidosis: How Similar Are These Two Diseases? Front Immunol. 2022 May 9;13:877303. doi: 10.3389/fimmu.2022.877303.
9. Calender A, Israel-Biet D, Valeyre D, Pacheco Y. Modeling Potential Autophagy Pathways in COVID-19 and Sarcoidosis. Trends Immunol. 2020 Oct;41(10):856–9. doi: 10.1016/j.it.2020.08.001.
10. Cochrane Handbook for Systematic Reviews of Interventions [Internet]. [cited 2023 Jun 16]. Available from: https://training.cochrane.org/handbook/current
11. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021 Mar 29;372:n160. doi: 10.1136/bmj.n160.
12. PROSPERO: International prospective register of systematic reviews: [Internet]. [cited 2023 Jun 16]. Available from: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023430311
13. Cochrane Controlled Register of Trials (CENTRAL) | Cochrane Library [Internet]. [cited 2023 Jul 4]. Available from: https://www.cochranelibrary.com/central/about-central
14. Jakubec P, Fišerová K, Genzor S, Kolář M. Pulmonary Complications after COVID-19. Life (Basel). 2022 Feb 28;12(3):357. doi: 10.3390/life12030357.
15. La Placa M, Fuccio L, Guglielmo A, Misciali C, Montagnani M. Violaceous Papules and Plaques on the Fingers during COVID-19: A Quiz. Acta Derm Venereol. 2023 Feb 7;103:5342. doi: 10.2340/actadv.v103.5342.
16. Palones E, Pajares V, López L, Castillo D, Torrego A. Sarcoidosis following SARS‐CoV‐2 infection: Cause or consequence? Respirol Case Rep. 2022 Apr 27;10(6):e0955. doi: 10.1002/rcr2.955.
17. Bollano E, Polte CL, Mäyränpää MI, et al. Cardiac sarcoidosis and giant cell myocarditis after COVID‐19 infection. ESC Heart Fail. 2022 Aug 22;9(6):4298–303. doi: 10.1002/ehf2.14088.
18. Alonso M, Seijo De Armas Y, Sleiman JR, et al. A case of cardiac sarcoidosis with successful heart transplantation after COVID-19 infection. J Cardiol Cases. 2021 Aug 20;25(3):133–6. doi: 10.1016/j.jccase.2021.07.015
19. Racil H, Znegui T, Maazoui S, et al. Can Coronavirus Disease 2019 Induce Sarcoidosis: A Case Report. Thorac Res Pract. 2023 Feb 21;24(1):45–8. doi: 10.5152/ThoracResPract.2023.22076.
20. Somboonviboon D, Wattanathum A, Keorochana N, Wongchansom K. Sarcoidosis developing after COVID-19: A case report. Respirol Case Rep. 2022 Sep;10(9):e01016. doi: 10.1002/rcr2.1016.
21. Rodrigues FT, Quirino RM, Gripp AC. Cutaneous and pulmonary manifestations of sarcoidosis triggered by coronavirus disease 2019 infection. Rev Soc Bras Med Trop. 2022;55:e06472021. doi: 10.1590/0037-8682-0647-2021.
22. Capaccione KM, McGroder C, Garcia CK, Fedyna S, Saqi A, Salvatore MM. COVID-19-induced pulmonary sarcoid: A case report and review of the literature. Clin Imaging. 2022 Mar;83:152–8. doi: 10.1016/j.clinimag.2021.12.021.
23. Rossi G, Cavazza A, Colby TV. Pathology of Sarcoidosis. Clin Rev Allergy Immunol. 2015 Aug;49(1):36–44. doi: 10.1007/s12016-015-8479-6.
24. Chen ES, Moller DR. Etiologies of Sarcoidosis. Clin Rev Allergy Immunol. 2015 Aug;49(1):6–18. doi: 10.1007/s12016-015-8481-z
25. Mogal MdR, Sompa SA, Junayed A, Mahmod MdR, Abedin MdZ, Sikder MdA. Common genetic aspects between COVID-19 and sarcoidosis: A network-based approach using gene expression data. Biochem Biophys Rep. 2022 Feb 1;29:101219. doi: 10.1016/j.bbrep.2022.101219.
26. Sakthivel P, Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr Opin Hematol. 2017 Jan;24(1):59–65. doi: 10.1097/MOH.0000000000000301.
27. Broos CE, Koth LL, van Nimwegen M, et al. Increased T-helper 17.1 cells in sarcoidosis mediastinal lymph nodes. Eur Respir J. 2018 Mar;51(3):1701124. doi: 10.1183/13993003.01124-2017. Cited
28. Chen ES. Reassessing Th1 versus Th17.1 in sarcoidosis: new tricks for old dogma. Eur Respir J. 2018 Mar;51(3):1800010. doi: 10.1183/13993003.00010-2018.
29. Hasanvand A. COVID-19 and the role of cytokines in this disease. Inflammopharmacology. 2022;30(3):789–98. doi: 10.1007/s10787-022-00992-2.
30. De Biasi S, Meschiari M, Gibellini L, et al. Marked T cell activation, senescence, exhaustion and skewing towards TH17 in patients with COVID-19 pneumonia. Nat Commun. 2020 Jul 6;11(1):3434. doi: 10.1038/s41467-020-17292-4.
31. Takatsuka H, Fahmi M, Hamanishi K, Sakuratani T, Kubota Y, Ito M. In silico Analysis of SARS-CoV-2 ORF8-Binding Proteins Reveals the Involvement of ORF8 in Acquired-Immune and Innate-Immune Systems. Front Med (Lausanne). 2022 Feb 1;9:824622. doi: 10.3389/fmed.2022.824622.
32. Esteves T, Aparicio G, Garcia-Patos V. Is there any association between Sarcoidosis and infectious agents?: a systematic review and meta-analysis. BMC Pulm Med. 2016 Nov 28;16:165. doi: 10.1186/s12890-016-0332-z.
33. Robinson LA, Smith P, SenGupta DJ, Prentice JL, Sandin RL. Molecular analysis of sarcoidosis lymph nodes for microorganisms: a case–control study with clinical correlates. BMJ Open. 2013 Dec 21;3(12):e004065. doi: 10.1136/bmjopen-2013-004065.
34. Negi M, Takemura T, Guzman J, et al. Localization of Propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod Pathol. 2012 Sep;25(9):1284–97. doi: 10.1038/modpathol.2012.80.
35. Schupp JC, Tchaptchet S, Lützen N, et al. Immune response to Propionibacterium acnes in patients with sarcoidosis – in vivo and in vitro. BMC Pulmonary Medicine. 2015 Jul 24;15(1):75. doi: 10.1186/s12890-015-0070-7.
36. Zhou Y, Wei YR, Zhang Y, Du SS, Baughman RP, Li HP. Real-time quantitative reverse transcription-polymerase chain reaction to detect propionibacterial ribosomal RNA in the lymph nodes of Chinese patients with sarcoidosis. Clin Exp Immunol. 2015 Sep;181(3):511–7. doi: 10.1111/cei.12650.
37. Yorozu P, Furukawa A, Uchida K, et al. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respiratory Investigation. 2015 Jul 1;53(4):161–9. doi: 10.1016/j.resinv.2015.02.005.
38. Zhou Y, Hu Y, Li H. Role of Propionibacterium Acnes in Sarcoidosis: A Meta-analysis. Sarcoidosis Vasc Diffuse Lung Dis. 2013 Dec 17;30(4):262–7.
39. Ishige I, Eishi Y, Takemura T, et al. Propionibacterium acnes is the most common bacterium commensal in peripheral lung tissue and mediastinal lymph nodes from subjects without sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2005 Mar;22(1):33–42.
40. Starshinova AA, Malkova AM, Basantsova NY, et al. Sarcoidosis as an Autoimmune Disease. Front Immunol. 2020 Jan 8;10:2933. doi: 10.3389/fimmu.2019.02933.
41. Statement on Sarcoidosis. Am J Respir Crit Care Med. 1999 Aug;160(2):736–55. doi: 10.1164/ajrccm.160.2.ats4-99.
42. Tana C, Mantini C, Cipollone F, Giamberardino MA. Chest Imaging of Patients with Sarcoidosis and SARS-CoV-2 Infection. Current Evidence and Clinical Perspectives. Diagnostics (Basel). 2021 Jan 27;11(2):183. doi: 10.3390/diagnostics11020183.
43. Cozzi D, Cavigli E, Moroni C, et al. Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Jpn J Radiol. 2021;39(8):721–32. doi: 10.1007/s11604-021-01120-w.
44. Momenzadeh M, Shahali H, Farahani AA. Coronavirus Disease 2019 Suspicion: A Case Report Regarding a Male Emergency Medical Service Pilot With Newly Diagnosed Sarcoidosis. Air Med J. 2020;39(4):296–7. doi: 10.1016/j.amj.2020.04.014.
45. Chams N, Chams S, Badran R, et al. COVID-19: A Multidisciplinary Review. Front Public Health. 2020 Jul 29;8:383. doi: 10.3389/fpubh.2020.00383.
46. Lampejo T, Bhatt N. Can infections trigger sarcoidosis? Clin Imaging. 2022 Apr;84:36–7. doi: 10.1016/j.clinimag.2022.01.006.
47. WHO Coronavirus (COVID-19) Dashboard [Internet]. [cited 2023 Oct 19]. Available from: https://covid19.who.int
48. Narula N, Iannuzzi M. Sarcoidosis: Pitfalls and Challenging Mimickers. Front Med (Lausanne). 2021 Jan 11;7:594275. doi: 10.3389/fmed.2020.594275.
49. Mihalov P, Krajčovičová E, Káčerová H, Sabaka P. Lofgren syndrome in close temporal association with mild COVID-19 – Case report. IDCases. 2021 Sep 23;26:e01291. doi: 10.1016/j.idcr.2021.e01291.