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Abstract

The duration of mechanical systole—also termed the flow time (FT) or left ventricular ejection time (LVET)—is meas-
ured by Doppler ultrasound and increasingly used as a stroke volume (SV) surrogate to guide patient care. Neverthe-
less, confusion exists as to the determinants of FT and a critical evaluation of this measure is needed. Using Doppler
ultrasound of the left ventricular outflow tract velocity time integral (LVOT VTI) as well as strain and strain rate echo-
cardiography as grounding principles, this brief commentary offers a model for the independent influences of FT. This
framework establishes that systolic duration is directly proportional to the distance traversed by a single cardiac myo-
cyte and indirectly proportional to its shortening velocity. Grossly, this translates to a direct relationship between FT
and the LVOT VTl (i.e, SV) and an indirect relationship with mean ejection velocity. Thus, changes in the systolic time
can infer SV change, so long as other cardiac parameters are considered.

Flow time (FT) is the duration of mechanical systole,
usually measured in milliseconds (ms) [1, 2]. FT was,
historically, obtained by analysis of the carotid pulse—
assessed from the onset of the systolic upstroke to the
trough of the incisural notch [1]. Fundamentally, FT is
the time that the aortic valve is open and ejecting blood
and is, accordingly, also known as left ventricular ejection
time (LVET) (Fig. 1A) [1, 2]. Early studies related FT to
stroke volume (SV) though more recent evaluations in
the intensive care unit (ICU) considered FT to be a meas-
ure of preload [1-3]; nevertheless, debate about the true
physiological determinants of FT led some prominent
intensivists to declare that a ‘critical evaluation’ of FT is
needed [4, 5].

Increasingly, Doppler ultrasound of the common
carotid artery is used to measure FT (Fig. 1B) as surrogate
for SV change (SV,) and, in turn, to evaluate a patient for
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‘fluid responsiveness’ (FR), when corrected for heart rate
(HR) [6-10]. Given this newfound clinical application, a
better physiological grounding of FT is needed. This brief
commentary offers a framework for time as a metric of
left ventricular function. More specifically, it is proposed
that FT is directly related to SV, but inversely related
to mean ejection velocity. Both Doppler ultrasound of
the left ventricular outflow tract (LVOT) and stress and
strain echocardiography are used as conceptual models
to connect the duration of mechanical systole (i.e., FT
and LVET) to SV, contractility, afterload and HR.

Time and the left ventricular outflow tract

Doppler ultrasound of the LVOT generates a roughly
triangular-shaped spectrogram with velocity (i.e., cen-
timeters per second, cm/s) on the y-axis and time (i.e.,
seconds) on the x-axis Fig. 2A) [11]. From this Doppler
envelope, the distance that the blood travels from the
LVOT is calculated, in centimeters (cm), by integrating
the velocity—time curve as follows:

t

distance = / vdt 1)

to
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Fig. 1 The left ventricular ejection and flow times. A) 4 cardiac cycles obtained via trans-esophageal echocardiography. Velocity increases
in the downwards y-axis and x-axis is time. LVET is the duration the aortic valve is open and ejecting blood, the left ventricular ejection time. VTI
is velocity time integral. B) Flow time from the common carotid artery. Velocity increases upwards on the y-axis and the x-axis is time

where t, and t are the onset and offset of mechanical sys-
tole (i.e., FT or LVET), respectively, and v is the instan-
taneous velocity at any given time throughout systole. A
mathematically equivalent way of expressing this is to use
the mean ejection velocity (v) during mechanical systole,
as follows:

distance = v X time (2)

From Egs. 1 and 2 the ‘distance’ that is calculated is also
called the LVOT velocity time integral (VTI) because
it is the area under the velocity—time curve (Fig. 2A). If
we multiply the LVOT VTI (i.e., distance) by the cross-
sectional area (CSA) of the LVOT, SV is obtained in cm®
or milliliters. Clinically, the CSA of the LVOT is often
assumed to be constant; thus, LVOT VTI (i.e., distance)
change is directly related to SV,. By rearranging Eq. 2, we
see how time relates to LVOT VTL

LVOT VTI
v

time = (3)

Per Eq. 3, the duration of systole is directly propor-
tional to LVOT VTI, but indirectly related to v. There-
fore, increased FT could mean LVOT VTI (ie., SV)
augmentation and/or decreased v and vice versa. Never-
theless, Eq. 3 might be perplexing given the conceptual
and physiological linkage between the numerator (i.e.,
LVOT VTI) and the denominator (i.e., mean ejection
velocity). To address this, an analogy using a single car-
diac myocyte is proposed (Fig. 2B). The time it takes for a
single myocyte to contract is directly proportional to the
distance, or length, the myocyte shortens (i.e., extent of
deformation) and indirectly proportional to its shorten-
ing velocity (i.e., rate of deformation). To tease out how
cardiac loading affects the extent and rate of deforma-
tion, independently, strain and strain rate echocardiogra-
phy are explored.
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Fig. 2 Relating left ventricular outflow tract Doppler ultrasound and strain echocardiography to flow time. A) cartoon of 3 cardiac cycles

with equal left ventricular outflow tract velocity time integral (LVOT VTI); see text for details. B) Analogy using single cardiac myocyte to understand
the relationship between time, distance and velocity. C) Framework relating flow time to LVOT VTl (i.e,, distance), mean ejection velocity (v), strain
(€) and strain rate (£'). EDV is end-diastolic volume, ESV is end-systolic volume. Note that increasing preload (i.e., EDV) will also increase flow time,
but only if EDV rises relative to ESV (i.e, increased stroke volume) and with constant mean ejection velocity

Strain and strain rate echocardiography

Abraham and colleagues studied strips of heart mus-
cle and found a strong, linear correlation between the
change in myocyte length and myocardial strain (g) [12].
Additionally, they found that strain rate (¢") directly and
indirectly correlated with contractility and afterload,
respectively. Carrying forward the mathematical rela-
tionship, described above, we arrive at:

. distance
time = =

modulates afterload (i.e., does the rise in SV also change
arterial elastance), as described by Burns and colleagues
[19]. This interdependence of cardiac loading parameters
confounds time as a measure of LV function but also
ties together seemingly disparate findings. For instance,
increased afterload might prolong FT by selectively
reducing shortening velocity (i.e., decreasing the denomi-
nator of Egs. 3 or 4) [20]; conversely, if elevated after-

extent of myocyte deformation

strain(e)

velocity ~—  rate of myocyte deformatiom ~ strain rate(e’)

(4)

Though € and &’ echocardiography are regional meas-
ures, when extrapolated to global cardiac function € (i.e.,
the extent of deformation) relates to SV while &” (i.e., the
rate of deformation) associates with contractility and
afterload (Fig. 2C). Indeed, animal models have con-
firmed that € tracks SV, well while &’ is directly related
to contractility and indirectly related to afterload [13-
16]. More complicated, however, is the effect of preload
on ¢ and ¢”. Both € and SV are enhanced by preload (i.e.,
by increasing end-diastolic volume, EDV, relative to the
end-systolic volume, ESV) [13, 14, 17]; however, the
effect of preload on &’ is more nuanced. When single
cardiac myocytes are studied, increasing preload does
not increase shortening velocity (i.e., €”) [18]; neverthe-
less, in vivo, the effect on ¢’ is also tied to how preload

load truncates SV to a greater extent (i.e., by raising ESV,
shrinking the numerator of Eqgs. 3 or 4), then the FT will
fall in response to increased afterload [21]. On the other
hand, to the extent that decreased afterload raises SV, FT
increases [22]; however, if diminished afterload concur-
rently augments deformation rate (¢') to a greater extent,
then systolic time falls (e.g., when severe aortic stenosis is
corrected) [23].

Heart rate correction

Thus far, FT was discussed without any heart rate (HR)
correction, which is commonly performed clinically.
There are numerous equations used to correct for heart
rate (e.g., Wodey, Bazett, Weissler) [24], but why might
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this be physiologically necessary? If the truncation of sys-
tole with increased HR is due only to reduced LV filling
(i.e., EDV or preload), then the fall in absolute FT would
directly reflect decreased € (or SV, globally). However, the
chronotropic response also increases myocyte shorten-
ing velocity—the so-called ‘Bowditch effect [18]'—which
diminishes systolic time for any given e. Accordingly,
there is a mild-to-moderate correlation between HR and
e’ [25, 26]; correcting for HR, in theory, accounts for this
phenomenon. Beyond accounting for chronotropy, there
are no known equations that adjust for inotropic or after-
load state when correcting systolic time.

Clinical implications
Decreasing FT (i.e., LVET) over time is a known, inde-
pendent predictor of incident congestive heart failure
(CHF) [27]. Furthermore, FT has been used to moni-
tor inpatient and outpatient therapy for patients with
reduced ejection fraction and CHF [28]; this popula-
tion has significantly reduced FT [28, 29] which negates
the notion that FT is a marker of preload because these
patients have increased left ventricular end-diastolic
volume (i.e., preload) despite substantially reduced FT.
Based on the model put forth above, the low FT is most
likely due to reduced SV (ie., from high ESV). Impor-
tantly, both positive inotropes and vasodilators aug-
ment FT in these patients [22, 28]. Because both of these
classes of agents increase ¢’ (i.e., reduce FT per the model
above), the observed rise in FT must mean these agents
significantly increase the extent of LV shortening (i.e., the
SV) by decreasing ESV. Nevertheless, within the realm of
CHE, a prolonged FT is does not necessarily imply opti-
mal cardiac function. For instance, increased systemic
vascular resistance and LV wall thickness both decrease
¢’ [16, 25], which prolongs FT. This could explain an
observed U-shape curve between FT and all-cause mor-
tality in patients with coronary artery disease [30].
Additionally, changes in corrected flow time of the
carotid artery have been successfully related to SV, in
critically-ill patients receiving a preload challenge either
by passive leg raising or intravenous crystalloids [6-8].
Per Egs. 3 and 4, an increase in corrected FT reflects
increased SV only when afterload and contractility (i.e.,
¢’ or ¥) remain constant. This is probably a fair assump-
tion when preload is administered, though increased SV
can reduce afterload in septic patients [31]. If reduced
arterial load were to simultaneously increase ¢’, then the
rise in FT with SV would be blunted. Interestingly, Bar-
jaktarevic and colleagues found a lower sensitivity than
specificity [6]; increased false negatives could be a conse-
quence of increased ejection velocity.
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An important caveat for the aforementioned is the
assumption that LVET (i.e., measured at the aortic valve)
is equivalent to the FT measured in a large central artery
like the common carotid. While the time of mechani-
cal systole measured at the common carotid is strongly
correlated with the time that the aortic valve is open and
ejecting blood [23], the relationship between aortic valve
opening and the duration of systole in distal, smaller
arteries may not be as direct. More specifically, measur-
ing arterial blood velocity closer to the arterioles—the
main source of wave reflections—reveals earlier systolic
deceleration and velocity reversal at the dicrotic notch
[32]. This could occur while the aortic valve is still open,
meaning that FT in a distal artery might underestimate
absolute LVET. A similar phenomenon is possible in
the common carotid artery following catastrophic brain
injury where cerebral vascular resistance is significantly
increased, enhancing early wave reflections. Neverthe-
less, measuring FT change in a distal artery before and
after a hemodynamic intervention (i.e., a dynamic para-
digm) might still track changes in LVET but this is not
known.

Conclusion

Systolic duration measured by Doppler ultrasound is
directly proportional to the distance traversed by a single
cardiac myocyte and indirectly proportional to the veloc-
ity of its shortening. Globally, this translates to a direct
relationship between time and the LVOT VTI (or SV)
and an indirect relationship with mean ejection velocity.
Studies of myocardial strain and strain rate clarify this
relationship. Increased contractility, chronotropy and
decreased afterload all increase " which reduces FT and
vice versa. Changes in the systolic time domain can be
used to infer SV, so long as other cardiac parameters are
considered.

Abbreviations

FT Flow time

ms Milliseconds

LVET  Left ventricular ejection time
SV Stroke volume

ICU Intensive care unit

SV, Stroke volume change

FR Fluid responsiveness

HR Heart rate

LVOT  Left ventricular outflow tract
cm Centimeters

v Mean ejection velocity

VTI Velocity time integral

CSA Cross sectional area

€ Myocardial strain

g Myocardial strain rate

ESV End-systolic volume
EDV End-diastolic volume
CHF  Congestive heart failure
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