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Abstract

Cost-effective screening methods for Renal Cell Carcinoma (RCC) are still lacking. Angiogenesis is a recognized
hallmark of cancer growth, leading to distinguishable perfusion patterns in tumors from those in normal tissue.
This establishes the basis for diagnostic imaging solutions by dynamic contrast-enhanced ultrasound (DCE-US). In
the past years, we have developed contrast-ultrasound dispersion imaging (CUDI) techniques to quantify prostate
DCE-US acquisitions, obtaining promising results for prostate cancer localization. In this pilot study, we investigated

Contrast-ultrasound dispersion imaging

for the first time its feasibility for RCC localization. DCE-US acquisitions of the kidney in 5 patients were used to
perform CUDI analysis. With the obtained CUDI parameters and the delineated tumor and parenchyma regions,
we performed pixel-based classification, from which the highest area under the receiver-operating-characteristic
curve (AUC)=0.96 was obtained for an individual patient, and an average AUC=0.68 was obtained for the full
patient dataset, showing the potential of CUDI for solid RCC localization. Further validation in a larger dataset and
evaluation of the compatibility of point-of-care diagnosis are required.
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Introduction

With over 430,000 new cases and around 180,000 new
deaths in 2020, kidney cancer accounts for 2.2% and
1.8% of all oncological diagnoses and deaths world-
wide, respectively [1]. About nine out of ten cancers in
the kidney are renal cell carcinomas (RCCs) [2]. RCC
comprises a broad spectrum of histopathological enti-
ties, of which the three main RCC subtypes are: clear-
cell RCC (ccRCC), papillary RCC (pRCC-type I and II),
and chromophobe RCC (chRCC) [3]. Typically, RCC
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appears symptom-free at its early stage until progression
[4]. Patients with RCCs can be cured at an early stage,
while patients with stage four disease have a 12% five-
year survival rate only [5]. Nowadays, over 60% of RCCs
are diagnosed incidentally with computed tomography
(CT) imaging performed for other medical purposes [3,
4]. Therefore, an efficient diagnostic method compatible
with point-of-care diagnosis is in demand for RCC detec-
tion and screening, especially at an early stage.
Tumor-driven angiogenesis is a recognized indicator
of cancer growth, which is characterized by increased
microvascular density, higher vessel tortuosity, and
smaller and irregular vessel diameter [6—8]. Due to the
complex microvascular architecture, blood flow pat-
terns in the malignant regions become distinguishable
from those in the benign tissue regions, establishing the
basis for tumor diagnostics by the assessment of blood
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perfusion [9-11]. According to the European Association
of Urology guidelines on RCC, contrast-enhanced com-
puted tomography (CE-CT) is strongly recommended for
RCC diagnostics [3]. However, CE-CT imaging is expen-
sive and utilizes ionizing radiations. Being cost effective
and radiation-free, dynamic contrast-enhanced ultra-
sound (DCE-US) imaging represents a promising alter-
native. DCE-US provides real-time analysis of the tumor
(micro)vasculature and enhancement characteristics by
imaging the intravascular passage of ultrasound contrast
agents (UCAs) following their intravenous injection.

In clinical routine, the diagnosis of RCCs using DCE-
US imaging is mostly based on qualitative evaluation of
the enhancement patterns in the kidney during different
vascular phases [12—14]. However, qualitative assessment
suffers from inter-observer variability [15]. More recently,
quantitative analysis of DCE-US acquisitions has been
proposed by extraction of perfusion parameters from the
time-intensity curves (TICs) reflecting the temporal evo-
lution of the UCA concentration [16, 17]. However, this
assessment can be influenced by ultrasound attenuation,
scanner settings, and the complex, inconsistent correla-
tion between angiogenesis and perfusion [18, 19].

To overcome these limitations and achieve the goal
of an efficient diagnostic method by DCE-US, we have
proposed and developed contrast-ultrasound disper-
sion imaging (CUDI) to quantitatively analyze DCE-US
acquisitions by modeling the kinetics of UCAs as a con-
vective-dispersion process. By CUDI, we have obtained
promising results for prostate cancer localization in the
past years [19-24]; however, investigation of the feasibil-
ity of CUDI for kidney cancer diagnosis is still lacking.
Here, we translated CUDI for the first time for the quan-
titative analysis of DCE-US acquisitions in the kidney
by optimizing DCE-US acquisitions, performing CUDI
analysis, and assessing the diagnostic performance in
patients, aiming at investigating the feasibility of CUDI
for primary RCC diagnostics.

Materials and methods

Data acquisition

The data acquisition was performed on nine patients at
the Amsterdam University Medical Center (UMC, loca-
tion AMC) under approval granted by the local ethics
committee. In this pilot study, we aimed at optimizing
kidney DCE-US scan settings and investigating the fea-
sibility of CUDI for kidney DCE-US acquisitions analysis;
therefore, we focused more on the technical side rather
than building a standard clinical study. For this purpose,
the inclusion criteria were patients who were diagnosed
with kidney cancer by CT scan and referred for surgery.
All DCE-US acquisitions were performed by a Philips
iU22 ultrasound scanner (Philips Healthcare, Bothell,
WA) equipped with a C5-2 convex transducer, operating

Page 2 of 8

in power modulation at 3.5 MHz with a mechanical index
of 0.19. The scan duration was 120 s following an intra-
venous injection of a bolus of 2.4-mL SonoVue® (Bracco,
Milan, Italy) UCA and a subsequent flush of 10 mL saline.
During the scanning, the patient was under anesthesia
for a planned radical or partial nephrectomy and a short
period of timed apnea to mitigate the impact of respira-
tory motion. The first four acquisitions were used to opti-
mize the ultrasound machine settings and the remaining
five acquisitions were used for analysis.

Data pre-processing

Prior to performing CUDI analysis, ultrasound data lin-
earization was implemented to recover a linear relation
between the acoustic intensity and the UCA concentra-
tion from the log-compressed DCE-US data [20]. Sub-
sequently, the spatial resolution of the ultrasound image
was first measured by computing a kernel-based autoco-
variance over the whole image, as described in [22, 25].
After that, speckle size regularization was performed to
avoid the influence of anisotropic and depth-dependent
speckle on the TIC analysis [22, 25], obtaining a regular-
ized resolution of 0.85 mm in both the axial and lateral
directions. Moreover, motion resulting from free-hand
scanning was compensated using the strategy described
n [26]. After that, singular value decomposition (SVD)
was employed to spatiotemporally remove residual tissue
clutter and noise signals while preserving UCA move-
ment and signal intensity variations [27]. The cut-off
threshold for rejecting singular values was determined
on the basis of the mean frequency estimated from the
power spectral density of the temporal singular vectors
[28]. And for each type of analysis, SVD filtering was the
same for all the acquisitions.

TIC fitting analysis

The pre-processed data was analyzed by two different
CUDI techniques. One approach comprises fitting the
modified local density random walk (mLDRW) model to
the TICs measured at each pixel, from which the disper-
sion-related parameter k can be extracted as described in
[20]. The mLDRW, which is an analytical solution to the
convective-dispersion process, is derived as

B K K(t—to—p)?
C(t) = AUC, | P ( 0 )

2(t —to)
where C(%) is the measured TIC, AUC is the area under
the TIC, ty is the theoretical injection time of the con-
trast agent, and g is its mean transit time. For the fitting,
the SVD cut-off frequency was set to 0.2 Hz. In addition,
typical perfusion parameters such as the appearance
time (AT, the time when the intensity reaches 5% of the
peak) and full-width at half-maximum (FWHM, the time
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duration when the intensity is above 50% of the peak)
were also extracted from the fitted curves. Only pixels
with sufficient fitting quality (determination coefficient
R? > 0.7) were considered for further analysis.

Spatiotemporal similarity analysis

Cancer-associated changes in the microvascular network
can lead to tumor perfusion patterns and UCA dispersion
kinetics that are distinguishable from those in normal tis-
sue. By modelling the spatiotemporal evolution of the
UCA concentration as a convective-dispersion process,
the changes in perfusion and dispersion lead to different
TIC shapes. Tumor growth is associated with increased
blood perfusion and decreased dispersion, which is
reflected into a less skewed TIC shape and reduced varia-
tion of the TIC shape over the tumor region; therefore
resulting in higher similarity between neighboring TICs
[19, 22]. As described in [19], spatiotemporal similar-
ity analysis was performed by each TIC with neighbor-
ing TICs extracted from a ring-shaped kernel. The inner
and outer radius of the kernel were set at 1 and 2.5 mm,
respectively, accounting for the system resolution and the
scale at which angiogenesis occurs. The kernel should be
larger than the system resolution but smaller than the
scale at which angiogenesis occurs [6]. This enabled the
estimation of linear similarity measures including the
spectral coherence (p) [19, 22] and the temporal corre-
lation (r) [21], as well as nonlinear similarity measures
such as mutual information (/) [23]. For spatiotemporal
similarity analysis, the SVD cut-off frequency was set to
0.5 Hz, and a dedicated time window of 35 s was applied
to each TIC. The role of the time window was to focus

Rlng-shaped Central TIC
kernel
.Ultrasound data I |:> :L CUDI analysis
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on the most relevant part of the TIC, which contains the
first UCA passage [21-23].

Method validation

Five DCE-US acquisitions were used to investigate the
feasibility of CUDI for solid RCC diagnostics. Four cases
were ccRCC histological subtype and one was pRCC. For
each acquisition, tumor and parenchyma regions were
delineated by two urologists in consensus, based on the
corresponding ultrasound B-mode images and CT scans
(Fig. 1). The CUDI parametric maps of the delineated
tumor and parenchyma regions were compared. Pixel-
based classification was then performed by the obtained
CUDI parameters in each individual acquisition as
well as in the combined dataset of the five acquisitions.
Considering the different sizes of delineated tumor and
parenchyma regions, the same number of pixel samples
from both the delineated tumor and parenchyma regions
in each patient data were randomly selected for the pixel-
based classification, avoiding imbalanced classification.
The pixels in the tumor and parenchyma regions were
given the label as positive or negative, and the obtained
CUDI parameters were used as scores. Based on this, for
each CUDI parameter a receiver-operating-characteristic
curve could be derived, and the area under the receiver-
operating-characteristic curve (AUC) was then com-
puted to assess the classification performance for each
parameter. A statistical analysis was performed to assess
the significance of the performance difference (p-value)
between the TIC fitting and spatiotemporal similarity
analysis using the single-tailed Wilcoxon signed-rank test
with the AUC values corresponding to the two types of
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> *‘%Fi*

Fig.1 CUDI analysis of one patient dataset (case 1, ccRCC subtype). (a) is the B-mode image of the kidney. The tumor (T) and parenchyma (P) regions are
indicated by red and green contours, respectively. (b) and (c) show the CUDI analysis comprising the TIC fitting analysis and the spatiotemporal similarity
analysis. (d) shows the parametric maps of the TIC fitting results: k, AT and FWHM. Pixels with low fitting quality ( R? <0.7) are shown in white; (e) shows
the parametric maps of the spatiotemporal similarity analysis results: p, r and /. Pixels with low enhancement (less than 10 gray levels) are regarded as
invalid pixels and shown in white
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Table 1 Overview of five DCE-US acquisitions

Case 1 Case 2 Case 3 Case 4 Case5
Tumor histological types ccRCC ccRCC ccRCC ccRCC pRCC
Delineated lesion diameter 6cm 5cm 4cm 3cm 3cm
Delineated parenchyma diameter 2cm approx.2 cm 3cm 4cm 3cm
(a) (b) 0Rotation angle map [deg] (C) I6ateral resolution map [mm] (d) OAxial resolution map [mm]
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Fig. 2 (a) Shows a local autocovariance result. An ellipse contour was fitted to the full-width at half-maximum of the local autocovariance result, from
which the long axis, short axis, and rotation angle can then be extracted. By moving the kernel over the whole image, the distribution of the long axis,
short axis, and rotation angle can be obtained, describing the variation of lateral and axial resolutions as shown in (b-d)

Table 2 Area under the receiver-operating-characteristic curve
(AUQ) for pixel classification of four ccRCC cases

Parameter Case 1 Case 2 Case 3 Case 4 Total
K 0.61 040 0.66 0.29 0.50
AT 0.89 0.80 0.65 0.35 0.68
FWHM 0.20 042 040 0.79 045
p 0.82 0.82 0.57 0.69 0.64
r 0.78 0.95 0.56 0.74 0.67
I 0.84 0.96 0.54 0.70 0.67

analysis as the two groups of input. An overview of the
five DEC-US acquisitions is displayed in Table 1.

Results
Figure 2 shows the measurement results of the axial and
lateral resolution of the ultrasound image.

Figure 1 shows the CUDI analysis results for one
ccRCC patient. The parametric maps based on the TIC
fitting analysis and the spatiotemporal similarity analy-
sis demonstrate the difference between the tumor and
parenchyma regions. The TIC fitting analysis revealed
distinct hemodynamic characteristics in the tumor
region, characterized by higher x and AT values, along
with lower FWHM values. The increased x and reduced
FWHM values indicate rapid wash-in and wash-out
kinetics of UCA following its arrival. These findings
were further supported by the spatiotemporal similarity
analysis, which demonstrated higher p, r, and I values,
reflecting enhanced perfusion efficiency and reduced dis-
persion within the tumor vasculature. This hemodynamic
pattern, marked by rapid contrast kinetics, is potentially
indicative of the tumor’s perfusion characteristics.

Qualitatively, the parametric maps revealed that the
spatiotemporal similarity analysis more clearly distin-
guishes between tumor and parenchyma compared to the
TIC fitting analysis. This observation was confirmed by
the following classification performance and the statisti-
cal analysis assessing the significance of the performance
difference.

In the full 5-patient datasets, the case with pRCC sub-
type lacked contrast enhancement, hampering further
TIC analysis. Table 2 shows the classification results for
each individual ccRCC case and the results for the com-
bined dataset. For all individual cases, as well as for the
combined dataset, the spatiotemporal similarity analy-
sis outperforms the TIC fitting analysis, achieving a
maximum AUC of 0.96 on a single patient and all the
AUC higher than 0.6 for the three similarity parameters
on the combined dataset. In case 3, the poor classifica-
tion performance can be attributed to the observation
that elevated p, r, and I values, typically characteristic
of tumor regions, were also detected in portions of the
parenchymal area. The statistical analysis shows that spa-
tiotemporal similarity analysis significantly outperforms
in the scenario of RCC diagnosis with a p-value=0.0103
(p-value <0.05).

Discussion

In this pilot study, we investigated the potential of
CUDI for primary RCC diagnostics by implementing
dedicated preprocessing steps including spatial resolu-
tion regularization, motion correction and SVD filter-
ing, optimizing the CUDI algorithms and validating the
results with pixel-based classification. The preliminary
results demonstrate that the spatiotemporal similarity
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analysis outperforms the TIC fitting analysis in differen-
tiating tumor and parenchyma regions, encouraging us to
extend the dataset with a large number of reliable DCE-
US acquisitions.

Compared to our previous experience on DCE-US
acquisitions in the prostate, the DCE-US acquisitions in
the kidney are more complex and heterogeneous, pos-
sibly because the image quality of the kidney can be
affected by fat thickness, kidney size, tumor location
and motion of surrounding organs. This increases the
challenge for performing quantitative analysis. Limiting
motion is beneficial for accurate CUDI analysis. The kid-
ney was scanned transabdominally, which is more prone
to motion artifacts as compared to the transrectal access
employed for prostate imaging.

In clinical routine, clinicians prefer to use enhancement
patterns of kidney DCE-US acquisitions to give a prelimi-
nary diagnosis, by describing the wash-in and wash-out
of UCAs in the kidney [29]. These could be reflected by
the parameters obtained from TIC fitting analysis, such
as AT and FWHM, as well as time-to-peak and peak
intensity as mentioned in [30]. However, the complexity
and heterogeneity of kidney DCE-US acquisitions may
hamper a robust and accurate analysis when only the
temporal evolution of individual TICs is considered. This
further emphasizes the importance of spatiotemporal
analysis of neighboring TICs.

In our five acquisitions, the histological pRCC sub-
type can be easily differentiated from the ccRCC subtype
due to a lack of enhancement in pRCC, hampering the
feasibility of our CUDI analysis. The poor blood perfu-
sion characteristics of the pRCC subtype are reflected
into hypo-enhanced DCE-US imaging, as also reported
in [16, 31]. For ccRCC, a heterogeneous hyperenhance-
ment appears generally in the tumor regions, enabling
the CUDI analysis. The obtained parametric maps dem-
onstrate the difference between tumor and parenchyma
regions, especially the higher spatiotemporal similar-
ity values in the tumor regions, which is in line with our
results on prostate cancer [19, 21, 22]. Tumor-driven
angiogenesis is characterized by increased microvascu-
lar density and higher tortuosity [8, 32], which limits the
dispersion of UCAs in the local measurement region. By
modelling the UCA transport kinetics as a convective-
dispersion process, lower dispersion is associated with
higher similarity between neighbouring TICs [19, 21,
22]. Thus, spatiotemporal similarity analysis provides
an indirect indicator of local dispersion, enabling tumor
region detection. However, the (micro)vascular architec-
ture in the kidney is complex, consisting of visible large
vessels and dense microvessels. The TICs extracted from
the large vessel regions show a high recirculation peak
intensity and faster appearance time, which may influ-
ence the TIC fitting quality and the accuracy of extracted
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parameters such as AT and wash-in rate. The fitting qual-
ity directly influences the number of valid pixels for TIC
analysis, which may further affect the classification per-
formance. On the contrary, the spatiotemporal similarity
analysis focuses on the shape similarity between neigh-
boring TICs in a local region (kernel) without requiring
TIC fitting, which can alleviate the impact of the pres-
ence of the high recirculation peak in individual TICs.
Moreover, motion affects neighbouring TICs in a simi-
lar manner, especially in a local region; spatiotemporal
similarity analysis is thus less affected by motion arte-
facts. This may explain why the spatiotemporal similar-
ity analysis outperforms the TIC fitting analysis. In case
3, high similarity values also appear in the delineated
parenchyma region, resulting in poor classification per-
formance. It is hard to explain the reason based on the
available ultrasound and CT images; therefore, histo-
pathological results are necessary to shed some light into
this peculiar case. Although the CUDI results obtained in
this study can be interpreted by the underlying physiol-
ogy of tumor-driven angiogenesis and the physics of the
convective-dispersion process, the limited dataset con-
strains the generalizability of these findings in the con-
text of RCC diagnosis. This limitation stems from three
primary factors. First, the heterogeneity of RCC subtypes
must be considered in CUDI analysis. Our dataset, being
relatively small, only encompassed ccRCC and pRCC
subtypes, leaving the applicability of CUDI to other sub-
types unexplored. While ccRCC appears suitable for
CUDI analysis, further validation of the diagnostic sig-
nificance remains necessary based on histopathologi-
cal reference and expanded ccRCC datasets, particularly
given the unexplained poor classification performance
observed in certain individual cases. Second, the UCA
perfusion process in the kidney involves multiple phases,
such as renal cortical enhancement and the final whole-
kidney perfusion. This pilot study did not account for the
potential impact of these multiphasic perfusion patterns
on CUDI analysis, which may represent a significant
limitation in diagnostic performance. Third, the complex
microvascular architecture of the kidney, comprising
both macroscopically visible vessels and dense microvas-
cular networks, yields TICs with varying shapes. Future
investigations with larger datasets should explore how
optimization of the CUDI analysis for different vessel
sizes could enhance both its accuracy and generalizability
in the diagnosis of RCC.

In this pilot study, the patients were under anesthesia
when scanning, which is challenging for clinical routine,
especially for point-of-care ultrasound. Therefore, the
potential of CUDI on routine kidney DCE-US acquisi-
tions should also be investigated and proper measures
should be taken to compensate for respiration motion.
The recent development of 3D ultrasound imaging
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techniques can be beneficial for the mitigation of errors
due to out-of-plane motion. Indeed, allowing for a more
complete visualization of the kidney boundaries, 3D
ultrasound imaging can lead to improved registration and
compensation of motion artifacts due to respiration and
free-hand scanning. Moreover, 3D imaging can provide
comprehensive information on the hemodynamics of the
whole kidney, describing more accurately the intrinsic
behavior of blood flow and UCA perfusion in the kidney;
therefore, we can directly model the 3D behavior of UCA
transport through the kidney as a convective-disper-
sion process, which may allow us to extract more imag-
ing markers, such as velocity vectors, dispersion, and
vector-derived UCA transport tractography [33, 34]. In
addition to hemodynamic parameters, ultrasound local-
ization microscopy based on 2D and 3D DCE-US has
recently been proposed to achieve resolutions beyond
the diffraction limit in microvascular imaging, by detect-
ing sparsely-distributed UCA microbubbles, tracking
the centroids of their point spread functions over subse-
quent frames to reconstruct the microvascular networks
where the microbubbles flow through. Several metrics
related to the structure of the microvasculature can be
extracted from ultrasound localization microscopy, such
as vessel diameter, vessel density, vessel tortuosity quan-
tified by distance metric, and fractal dimensions reveal-
ing the network complexity [35-38]. These may assess
the tumor-associated angiogenesis in the kidney. How-
ever, the limited temporal resolution of most ultrasound
scanners used in clinical routine as well as the motion
artifacts during the scanning still hampers the implemen-
tation of ultrasound localization microscopy with regular
clinical acquisitions in patients. Based on a set of quanti-
tative parameters, our previous work also confirms that
multiparametric ultrasound imaging achieved by training
a machine-learning model to combine complementary
parameters outperforms individual CUDI parameters for
prostate cancer diagnosis whether using 2D or 3D imag-
ing [39-41]. Hence, it is worth investigating in future
studies the performance of multiparametric ultrasound
imaging of the kidney, especially using histopathologi-
cal results as the ground truth for tumor detection and
subtype classification. While CE-CT is currently recom-
mended for RCC diagnosis, the aforementioned advance-
ments in ultrasound imaging and analysis techniques,
combined with the inherent advantages of ultrasound
imaging, including portability, high spatial resolution,
real-time imaging capability, radiation-free operation
in both static and dynamic imaging, along with its cost-
effectiveness, establish a solid foundation for the clinical
translation of CUDI as a point-of-care diagnostic tool
for kidney cancer. Specifically, the portability of ultra-
sound systems, coupled with their cost-effectiveness,
significantly reduces barriers to point-of-care diagnosis,
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making it accessible in diverse clinical settings. The high
spatial resolution and real-time imaging capabilities
enable visualization and hemodynamic analysis of tumor
vascularity and perfusion patterns, providing both struc-
tural and functional information that complement tissue
characterization. Furthermore, the radiation-free nature
of ultrasound eliminates concerns about radiation expo-
sure during dynamic acquisitions, a limitation inherent to
CE-CT. In general, these advance the field of ultrasound-
based cancer diagnostics.

Conclusion

Our preliminary results show the potential of CUDI for
solid RCC diagnostics, encouraging us to extend the
dataset with a large number of reliable DCE-US acqui-
sitions and corresponding histopathological results for
further validation. Moreover, the recently developed 3D
ultrasound imaging together with multiparametric image
analysis techniques are worth investigating in the sce-
nario of point-of-care diagnosis of kidney cancer.

Abbreviations
RCC Renal cell carcinoma

DCE-US  Dynamic contrast-enhanced ultrasound
UCAs Ultrasound contrast agents

CUDI Contrast-ultrasound dispersion imaging
ccRCC Clear-cell RCC

pRCC Papillary RCC

chRCC Chromophobe RCC

cT Computed tomography

CE-CT Contrast-enhanced computed tomography
TICs Time-intensity curves

SVD Singular value decomposition

K Dispersion-related parameter

AT Appearance time

FWHM Full-width at half-maximum

o Spectral coherence

r Temporal correlation

! Mutual information

AUC Area under the receiver-operating-characteristic curve
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p Parenchyma
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