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appears symptom-free at its early stage until progression 
[4]. Patients with RCCs can be cured at an early stage, 
while patients with stage four disease have a 12% five-
year survival rate only [5]. Nowadays, over 60% of RCCs 
are diagnosed incidentally with computed tomography 
(CT) imaging performed for other medical purposes [3, 
4]. Therefore, an efficient diagnostic method compatible 
with point-of-care diagnosis is in demand for RCC detec-
tion and screening, especially at an early stage.

Tumor-driven angiogenesis is a recognized indicator 
of cancer growth, which is characterized by increased 
microvascular density, higher vessel tortuosity, and 
smaller and irregular vessel diameter [6–8]. Due to the 
complex microvascular architecture, blood flow pat-
terns in the malignant regions become distinguishable 
from those in the benign tissue regions, establishing the 
basis for tumor diagnostics by the assessment of blood 

Introduction
With over 430,000 new cases and around 180,000 new 
deaths in 2020, kidney cancer accounts for 2.2% and 
1.8% of all oncological diagnoses and deaths world-
wide, respectively [1]. About nine out of ten cancers in 
the kidney are renal cell carcinomas (RCCs) [2]. RCC 
comprises a broad spectrum of histopathological enti-
ties, of which the three main RCC subtypes are: clear-
cell RCC (ccRCC), papillary RCC (pRCC-type I and II), 
and chromophobe RCC (chRCC) [3]. Typically, RCC 
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Abstract
Cost-effective screening methods for Renal Cell Carcinoma (RCC) are still lacking. Angiogenesis is a recognized 
hallmark of cancer growth, leading to distinguishable perfusion patterns in tumors from those in normal tissue. 
This establishes the basis for diagnostic imaging solutions by dynamic contrast-enhanced ultrasound (DCE-US). In 
the past years, we have developed contrast-ultrasound dispersion imaging (CUDI) techniques to quantify prostate 
DCE-US acquisitions, obtaining promising results for prostate cancer localization. In this pilot study, we investigated 
for the first time its feasibility for RCC localization. DCE-US acquisitions of the kidney in 5 patients were used to 
perform CUDI analysis. With the obtained CUDI parameters and the delineated tumor and parenchyma regions, 
we performed pixel-based classification, from which the highest area under the receiver-operating-characteristic 
curve (AUC) = 0.96 was obtained for an individual patient, and an average AUC = 0.68 was obtained for the full 
patient dataset, showing the potential of CUDI for solid RCC localization. Further validation in a larger dataset and 
evaluation of the compatibility of point-of-care diagnosis are required.
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perfusion [9–11]. According to the European Association 
of Urology guidelines on RCC, contrast-enhanced com-
puted tomography (CE-CT) is strongly recommended for 
RCC diagnostics [3]. However, CE-CT imaging is expen-
sive and utilizes ionizing radiations. Being cost effective 
and radiation-free, dynamic contrast-enhanced ultra-
sound (DCE-US) imaging represents a promising alter-
native. DCE-US provides real-time analysis of the tumor 
(micro)vasculature and enhancement characteristics by 
imaging the intravascular passage of ultrasound contrast 
agents (UCAs) following their intravenous injection.

In clinical routine, the diagnosis of RCCs using DCE-
US imaging is mostly based on qualitative evaluation of 
the enhancement patterns in the kidney during different 
vascular phases [12–14]. However, qualitative assessment 
suffers from inter-observer variability [15]. More recently, 
quantitative analysis of DCE-US acquisitions has been 
proposed by extraction of perfusion parameters from the 
time-intensity curves (TICs) reflecting the temporal evo-
lution of the UCA concentration [16, 17]. However, this 
assessment can be influenced by ultrasound attenuation, 
scanner settings, and the complex, inconsistent correla-
tion between angiogenesis and perfusion [18, 19].

To overcome these limitations and achieve the goal 
of an efficient diagnostic method by DCE-US, we have 
proposed and developed contrast-ultrasound disper-
sion imaging (CUDI) to quantitatively analyze DCE-US 
acquisitions by modeling the kinetics of UCAs as a con-
vective-dispersion process. By CUDI, we have obtained 
promising results for prostate cancer localization in the 
past years [19–24]; however, investigation of the feasibil-
ity of CUDI for kidney cancer diagnosis is still lacking. 
Here, we translated CUDI for the first time for the quan-
titative analysis of DCE-US acquisitions in the kidney 
by optimizing DCE-US acquisitions, performing CUDI 
analysis, and assessing the diagnostic performance in 
patients, aiming at investigating the feasibility of CUDI 
for primary RCC diagnostics.

Materials and methods
Data acquisition
The data acquisition was performed on nine patients at 
the Amsterdam University Medical Center (UMC, loca-
tion AMC) under approval granted by the local ethics 
committee. In this pilot study, we aimed at optimizing 
kidney DCE-US scan settings and investigating the fea-
sibility of CUDI for kidney DCE-US acquisitions analysis; 
therefore, we focused more on the technical side rather 
than building a standard clinical study. For this purpose, 
the inclusion criteria were patients who were diagnosed 
with kidney cancer by CT scan and referred for surgery. 
All DCE-US acquisitions were performed by a Philips 
iU22 ultrasound scanner (Philips Healthcare, Bothell, 
WA) equipped with a C5-2 convex transducer, operating 

in power modulation at 3.5 MHz with a mechanical index 
of 0.19. The scan duration was 120 s following an intra-
venous injection of a bolus of 2.4-mL SonoVue® (Bracco, 
Milan, Italy) UCA and a subsequent flush of 10 mL saline. 
During the scanning, the patient was under anesthesia 
for a planned radical or partial nephrectomy and a short 
period of timed apnea to mitigate the impact of respira-
tory motion. The first four acquisitions were used to opti-
mize the ultrasound machine settings and the remaining 
five acquisitions were used for analysis.

Data pre-processing
Prior to performing CUDI analysis, ultrasound data lin-
earization was implemented to recover a linear relation 
between the acoustic intensity and the UCA concentra-
tion from the log-compressed DCE-US data [20]. Sub-
sequently, the spatial resolution of the ultrasound image 
was first measured by computing a kernel-based autoco-
variance over the whole image, as described in [22, 25]. 
After that, speckle size regularization was performed to 
avoid the influence of anisotropic and depth-dependent 
speckle on the TIC analysis [22, 25], obtaining a regular-
ized resolution of 0.85 mm in both the axial and lateral 
directions. Moreover, motion resulting from free-hand 
scanning was compensated using the strategy described 
in [26]. After that, singular value decomposition (SVD) 
was employed to spatiotemporally remove residual tissue 
clutter and noise signals while preserving UCA move-
ment and signal intensity variations [27]. The cut-off 
threshold for rejecting singular values was determined 
on the basis of the mean frequency estimated from the 
power spectral density of the temporal singular vectors 
[28]. And for each type of analysis, SVD filtering was the 
same for all the acquisitions.

TIC fitting analysis
The pre-processed data was analyzed by two different 
CUDI techniques. One approach comprises fitting the 
modified local density random walk (mLDRW) model to 
the TICs measured at each pixel, from which the disper-
sion-related parameter κ can be extracted as described in 
[20]. The mLDRW, which is an analytical solution to the 
convective-dispersion process, is derived as

	
C (t) = AUC

√
κ

2π (t − t0)
exp

(
−κ (t − t0 − µ )2

2 (t − t0)

)
,

where C(t) is the measured TIC, AUC  is the area under 
the TIC, t0 is the theoretical injection time of the con-
trast agent, and µ  is its mean transit time. For the fitting, 
the SVD cut-off frequency was set to 0.2 Hz. In addition, 
typical perfusion parameters such as the appearance 
time (AT, the time when the intensity reaches 5% of the 
peak) and full-width at half-maximum (FWHM, the time 
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duration when the intensity is above 50% of the peak) 
were also extracted from the fitted curves. Only pixels 
with sufficient fitting quality (determination coefficient 
R2 > 0.7) were considered for further analysis.

Spatiotemporal similarity analysis
Cancer-associated changes in the microvascular network 
can lead to tumor perfusion patterns and UCA dispersion 
kinetics that are distinguishable from those in normal tis-
sue. By modelling the spatiotemporal evolution of the 
UCA concentration as a convective-dispersion process, 
the changes in perfusion and dispersion lead to different 
TIC shapes. Tumor growth is associated with increased 
blood perfusion and decreased dispersion, which is 
reflected into a less skewed TIC shape and reduced varia-
tion of the TIC shape over the tumor region; therefore 
resulting in higher similarity between neighboring TICs 
[19, 22]. As described in [19], spatiotemporal similar-
ity analysis was performed by each TIC with neighbor-
ing TICs extracted from a ring-shaped kernel. The inner 
and outer radius of the kernel were set at 1 and 2.5 mm, 
respectively, accounting for the system resolution and the 
scale at which angiogenesis occurs. The kernel should be 
larger than the system resolution but smaller than the 
scale at which angiogenesis occurs [6]. This enabled the 
estimation of linear similarity measures including the 
spectral coherence (ρ) [19, 22] and the temporal corre-
lation (r) [21], as well as nonlinear similarity measures 
such as mutual information (I) [23]. For spatiotemporal 
similarity analysis, the SVD cut-off frequency was set to 
0.5 Hz, and a dedicated time window of 35 s was applied 
to each TIC. The role of the time window was to focus 

on the most relevant part of the TIC, which contains the 
first UCA passage [21–23].

Method validation
Five DCE-US acquisitions were used to investigate the 
feasibility of CUDI for solid RCC diagnostics. Four cases 
were ccRCC histological subtype and one was pRCC. For 
each acquisition, tumor and parenchyma regions were 
delineated by two urologists in consensus, based on the 
corresponding ultrasound B-mode images and CT scans 
(Fig.  1). The CUDI parametric maps of the delineated 
tumor and parenchyma regions were compared. Pixel-
based classification was then performed by the obtained 
CUDI parameters in each individual acquisition as 
well as in the combined dataset of the five acquisitions. 
Considering the different sizes of delineated tumor and 
parenchyma regions, the same number of pixel samples 
from both the delineated tumor and parenchyma regions 
in each patient data were randomly selected for the pixel-
based classification, avoiding imbalanced classification. 
The pixels in the tumor and parenchyma regions were 
given the label as positive or negative, and the obtained 
CUDI parameters were used as scores. Based on this, for 
each CUDI parameter a receiver-operating-characteristic 
curve could be derived, and the area under the receiver-
operating-characteristic curve (AUC) was then com-
puted to assess the classification performance for each 
parameter. A statistical analysis was performed to assess 
the significance of the performance difference (p-value) 
between the TIC fitting and spatiotemporal similarity 
analysis using the single-tailed Wilcoxon signed-rank test 
with the AUC values corresponding to the two types of 

Fig. 1  CUDI analysis of one patient dataset (case 1, ccRCC subtype). (a) is the B-mode image of the kidney. The tumor (T) and parenchyma (P) regions are 
indicated by red and green contours, respectively. (b) and (c) show the CUDI analysis comprising the TIC fitting analysis and the spatiotemporal similarity 
analysis. (d) shows the parametric maps of the TIC fitting results: κ, AT and FWHM. Pixels with low fitting quality ( R2 <0.7) are shown in white; (e) shows 
the parametric maps of the spatiotemporal similarity analysis results: ρ, r and I. Pixels with low enhancement (less than 10 gray levels) are regarded as 
invalid pixels and shown in white
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analysis as the two groups of input. An overview of the 
five DEC-US acquisitions is displayed in Table 1.

Results
Figure 2 shows the measurement results of the axial and 
lateral resolution of the ultrasound image.

Figure  1 shows the CUDI analysis results for one 
ccRCC patient. The parametric maps based on the TIC 
fitting analysis and the spatiotemporal similarity analy-
sis demonstrate the difference between the tumor and 
parenchyma regions. The TIC fitting analysis revealed 
distinct hemodynamic characteristics in the tumor 
region, characterized by higher κ and AT values, along 
with lower FWHM values. The increased κ and reduced 
FWHM values indicate rapid wash-in and wash-out 
kinetics of UCA following its arrival. These findings 
were further supported by the spatiotemporal similarity 
analysis, which demonstrated higher ρ, r, and I values, 
reflecting enhanced perfusion efficiency and reduced dis-
persion within the tumor vasculature. This hemodynamic 
pattern, marked by rapid contrast kinetics, is potentially 
indicative of the tumor’s perfusion characteristics.

Qualitatively, the parametric maps revealed that the 
spatiotemporal similarity analysis more clearly distin-
guishes between tumor and parenchyma compared to the 
TIC fitting analysis. This observation was confirmed by 
the following classification performance and the statisti-
cal analysis assessing the significance of the performance 
difference.

In the full 5-patient datasets, the case with pRCC sub-
type lacked contrast enhancement, hampering further 
TIC analysis. Table 2 shows the classification results for 
each individual ccRCC case and the results for the com-
bined dataset. For all individual cases, as well as for the 
combined dataset, the spatiotemporal similarity analy-
sis outperforms the TIC fitting analysis, achieving a 
maximum AUC of 0.96 on a single patient and all the 
AUC higher than 0.6 for the three similarity parameters 
on the combined dataset. In case 3, the poor classifica-
tion performance can be attributed to the observation 
that elevated ρ, r, and I values, typically characteristic 
of tumor regions, were also detected in portions of the 
parenchymal area. The statistical analysis shows that spa-
tiotemporal similarity analysis significantly outperforms 
in the scenario of RCC diagnosis with a p-value = 0.0103 
(p-value < 0.05).

Discussion
In this pilot study, we investigated the potential of 
CUDI for primary RCC diagnostics by implementing 
dedicated preprocessing steps including spatial resolu-
tion regularization, motion correction and SVD filter-
ing, optimizing the CUDI algorithms and validating the 
results with pixel-based classification. The preliminary 
results demonstrate that the spatiotemporal similarity 

Table 1  Overview of five DCE-US acquisitions
Case 1 Case 2 Case 3 Case 4 Case 5

Tumor histological types ccRCC ccRCC ccRCC ccRCC pRCC
Delineated lesion diameter 6 cm 5 cm 4 cm 3 cm 3 cm
Delineated parenchyma diameter 2 cm approx.2 cm 3 cm 4 cm 3 cm

Table 2  Area under the receiver-operating-characteristic curve 
(AUC) for pixel classification of four ccRCC cases
Parameter Case 1 Case 2 Case 3 Case 4 Total
κ 0.61 0.40 0.66 0.29 0.50

AT 0.89 0.80 0.65 0.35 0.68
FWHM 0.20 0.42 0.40 0.79 0.45
ρ 0.82 0.82 0.57 0.69 0.64
r 0.78 0.95 0.56 0.74 0.67
I 0.84 0.96 0.54 0.70 0.67

Fig. 2  (a) Shows a local autocovariance result. An ellipse contour was fitted to the full-width at half-maximum of the local autocovariance result, from 
which the long axis, short axis, and rotation angle can then be extracted. By moving the kernel over the whole image, the distribution of the long axis, 
short axis, and rotation angle can be obtained, describing the variation of lateral and axial resolutions as shown in (b-d)
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analysis outperforms the TIC fitting analysis in differen-
tiating tumor and parenchyma regions, encouraging us to 
extend the dataset with a large number of reliable DCE-
US acquisitions.

Compared to our previous experience on DCE-US 
acquisitions in the prostate, the DCE-US acquisitions in 
the kidney are more complex and heterogeneous, pos-
sibly because the image quality of the kidney can be 
affected by fat thickness, kidney size, tumor location 
and motion of surrounding organs. This increases the 
challenge for performing quantitative analysis. Limiting 
motion is beneficial for accurate CUDI analysis. The kid-
ney was scanned transabdominally, which is more prone 
to motion artifacts as compared to the transrectal access 
employed for prostate imaging.

In clinical routine, clinicians prefer to use enhancement 
patterns of kidney DCE-US acquisitions to give a prelimi-
nary diagnosis, by describing the wash-in and wash-out 
of UCAs in the kidney [29]. These could be reflected by 
the parameters obtained from TIC fitting analysis, such 
as AT and FWHM, as well as time-to-peak and peak 
intensity as mentioned in [30]. However, the complexity 
and heterogeneity of kidney DCE-US acquisitions may 
hamper a robust and accurate analysis when only the 
temporal evolution of individual TICs is considered. This 
further emphasizes the importance of spatiotemporal 
analysis of neighboring TICs.

In our five acquisitions, the histological pRCC sub-
type can be easily differentiated from the ccRCC subtype 
due to a lack of enhancement in pRCC, hampering the 
feasibility of our CUDI analysis. The poor blood perfu-
sion characteristics of the pRCC subtype are reflected 
into hypo-enhanced DCE-US imaging, as also reported 
in [16, 31]. For ccRCC, a heterogeneous hyperenhance-
ment appears generally in the tumor regions, enabling 
the CUDI analysis. The obtained parametric maps dem-
onstrate the difference between tumor and parenchyma 
regions, especially the higher spatiotemporal similar-
ity values in the tumor regions, which is in line with our 
results on prostate cancer [19, 21, 22]. Tumor-driven 
angiogenesis is characterized by increased microvascu-
lar density and higher tortuosity [8, 32], which limits the 
dispersion of UCAs in the local measurement region. By 
modelling the UCA transport kinetics as a convective-
dispersion process, lower dispersion is associated with 
higher similarity between neighbouring TICs [19, 21, 
22]. Thus, spatiotemporal similarity analysis provides 
an indirect indicator of local dispersion, enabling tumor 
region detection. However, the (micro)vascular architec-
ture in the kidney is complex, consisting of visible large 
vessels and dense microvessels. The TICs extracted from 
the large vessel regions show a high recirculation peak 
intensity and faster appearance time, which may influ-
ence the TIC fitting quality and the accuracy of extracted 

parameters such as AT and wash-in rate. The fitting qual-
ity directly influences the number of valid pixels for TIC 
analysis, which may further affect the classification per-
formance. On the contrary, the spatiotemporal similarity 
analysis focuses on the shape similarity between neigh-
boring TICs in a local region (kernel) without requiring 
TIC fitting, which can alleviate the impact of the pres-
ence of the high recirculation peak in individual TICs. 
Moreover, motion affects neighbouring TICs in a simi-
lar manner, especially in a local region; spatiotemporal 
similarity analysis is thus less affected by motion arte-
facts. This may explain why the spatiotemporal similar-
ity analysis outperforms the TIC fitting analysis. In case 
3, high similarity values also appear in the delineated 
parenchyma region, resulting in poor classification per-
formance. It is hard to explain the reason based on the 
available ultrasound and CT images; therefore, histo-
pathological results are necessary to shed some light into 
this peculiar case. Although the CUDI results obtained in 
this study can be interpreted by the underlying physiol-
ogy of tumor-driven angiogenesis and the physics of the 
convective-dispersion process, the limited dataset con-
strains the generalizability of these findings in the con-
text of RCC diagnosis. This limitation stems from three 
primary factors. First, the heterogeneity of RCC subtypes 
must be considered in CUDI analysis. Our dataset, being 
relatively small, only encompassed ccRCC and pRCC 
subtypes, leaving the applicability of CUDI to other sub-
types unexplored. While ccRCC appears suitable for 
CUDI analysis, further validation of the diagnostic sig-
nificance remains necessary based on histopathologi-
cal reference and expanded ccRCC datasets, particularly 
given the unexplained poor classification performance 
observed in certain individual cases. Second, the UCA 
perfusion process in the kidney involves multiple phases, 
such as renal cortical enhancement and the final whole-
kidney perfusion. This pilot study did not account for the 
potential impact of these multiphasic perfusion patterns 
on CUDI analysis, which may represent a significant 
limitation in diagnostic performance. Third, the complex 
microvascular architecture of the kidney, comprising 
both macroscopically visible vessels and dense microvas-
cular networks, yields TICs with varying shapes. Future 
investigations with larger datasets should explore how 
optimization of the CUDI analysis for different vessel 
sizes could enhance both its accuracy and generalizability 
in the diagnosis of RCC.

In this pilot study, the patients were under anesthesia 
when scanning, which is challenging for clinical routine, 
especially for point-of-care ultrasound. Therefore, the 
potential of CUDI on routine kidney DCE-US acquisi-
tions should also be investigated and proper measures 
should be taken to compensate for respiration motion. 
The recent development of 3D ultrasound imaging 
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techniques can be beneficial for the mitigation of errors 
due to out-of-plane motion. Indeed, allowing for a more 
complete visualization of the kidney boundaries, 3D 
ultrasound imaging can lead to improved registration and 
compensation of motion artifacts due to respiration and 
free-hand scanning. Moreover, 3D imaging can provide 
comprehensive information on the hemodynamics of the 
whole kidney, describing more accurately the intrinsic 
behavior of blood flow and UCA perfusion in the kidney; 
therefore, we can directly model the 3D behavior of UCA 
transport through the kidney as a convective-disper-
sion process, which may allow us to extract more imag-
ing markers, such as velocity vectors, dispersion, and 
vector-derived UCA transport tractography [33, 34]. In 
addition to hemodynamic parameters, ultrasound local-
ization microscopy based on 2D and 3D DCE-US has 
recently been proposed to achieve resolutions beyond 
the diffraction limit in microvascular imaging, by detect-
ing sparsely-distributed UCA microbubbles, tracking 
the centroids of their point spread functions over subse-
quent frames to reconstruct the microvascular networks 
where the microbubbles flow through. Several metrics 
related to the structure of the microvasculature can be 
extracted from ultrasound localization microscopy, such 
as vessel diameter, vessel density, vessel tortuosity quan-
tified by distance metric, and fractal dimensions reveal-
ing the network complexity [35–38]. These may assess 
the tumor-associated angiogenesis in the kidney. How-
ever, the limited temporal resolution of most ultrasound 
scanners used in clinical routine as well as the motion 
artifacts during the scanning still hampers the implemen-
tation of ultrasound localization microscopy with regular 
clinical acquisitions in patients. Based on a set of quanti-
tative parameters, our previous work also confirms that 
multiparametric ultrasound imaging achieved by training 
a machine-learning model to combine complementary 
parameters outperforms individual CUDI parameters for 
prostate cancer diagnosis whether using 2D or 3D imag-
ing [39–41]. Hence, it is worth investigating in future 
studies the performance of multiparametric ultrasound 
imaging of the kidney, especially using histopathologi-
cal results as the ground truth for tumor detection and 
subtype classification. While CE-CT is currently recom-
mended for RCC diagnosis, the aforementioned advance-
ments in ultrasound imaging and analysis techniques, 
combined with the inherent advantages of ultrasound 
imaging, including portability, high spatial resolution, 
real-time imaging capability, radiation-free operation 
in both static and dynamic imaging, along with its cost-
effectiveness, establish a solid foundation for the clinical 
translation of CUDI as a point-of-care diagnostic tool 
for kidney cancer. Specifically, the portability of ultra-
sound systems, coupled with their cost-effectiveness, 
significantly reduces barriers to point-of-care diagnosis, 

making it accessible in diverse clinical settings. The high 
spatial resolution and real-time imaging capabilities 
enable visualization and hemodynamic analysis of tumor 
vascularity and perfusion patterns, providing both struc-
tural and functional information that complement tissue 
characterization. Furthermore, the radiation-free nature 
of ultrasound eliminates concerns about radiation expo-
sure during dynamic acquisitions, a limitation inherent to 
CE-CT. In general, these advance the field of ultrasound-
based cancer diagnostics.

Conclusion
Our preliminary results show the potential of CUDI for 
solid RCC diagnostics, encouraging us to extend the 
dataset with a large number of reliable DCE-US acqui-
sitions and corresponding histopathological results for 
further validation. Moreover, the recently developed 3D 
ultrasound imaging together with multiparametric image 
analysis techniques are worth investigating in the sce-
nario of point-of-care diagnosis of kidney cancer.
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