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Abstract

Microcirculation plays a crucial role in maintaining normal physiological functions in the human body by facili-

tating the exchange of materials between tissues and blood through a network of microvessels with diameters

less than 100 um. It regulates local hemodynamics and participates in important pathophysiological processes, such
as inflammatory reactions and immune responses. In recent years, the monitoring of super-resolution ultrasound
(SRUS) in microcirculation has significantly enhanced our understanding of microvascular structure and function,
while also providing insights into the noninvasive evaluation of organ conditions at the micro-level, thereby promot-
ing the diagnosis and treatment of related diseases. This review summarizes the development and clinical application
progress of SRUS, offering valuable insights into future research directions.
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Background

Microcirculation refers to the blood circulation that
occurs between arterioles and venules. It is character-
ized by capillaries with a diameter of less than 10 pm,
where the exchange of substances between blood and
tissue cells takes place. When structural or functional
impairments in microcirculation lead to a reduction
in microcirculatory blood perfusion, the supply of
nutrients and oxygen becomes insufficient to meet the
metabolic demand of tissues. Therefore, the structural
and hemodynamic conditions of the microvasculature
play a crucial role in diagnosing and assessing a wide
range of diseases and pathologies [1, 2]. Abnormal
changes in the structure or function of the microvas-
cular system have been identified as key evidence for
the development of several critical diseases, includ-
ing cancer, inflammation, atherosclerotic plaques,
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and neurodegenerative disorders, etc. [3]. Multimodal
ultrasound technologies, including color Doppler
flow imaging (CDFI), contrast-enhanced ultrasound
(CEUS), and super microvascular imaging (SMI), facili-
tate noninvasive monitoring of circulatory information
pertinent to the functional status of organ structures.
However, these methods exhibit certain limitations.
For instance, CDFI is restricted to visualizing vessels
at the millimeter scale and is susceptible to the angle
of the ultrasound beam. CEUS relies on the backscatter
intensity of microbubble (MB), which may be affected
by biocompatibility and the surrounding microenviron-
ment, complicating the differentiation between noise
and artifacts in practical applications [4]. Furthermore,
both CEUS and SMI encounter challenges in identify-
ing features smaller than the wavelength of ultrasound,
thereby constraining their ability to visualize capil-
laries. In recent years, a novel ultrasound technology
known as super-resolution ultrasound imaging (SRUS)
has emerged, which isolates source echoes that exceed
the classical diffraction limit [5]. This technology effec-
tively tracks MB signals and their motion trajectories
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within blood flow, generating images that accurately
reflect their positional information. Such capabili-
ties facilitate the measurement of density and velocity
distributions within the microvascular system, ena-
bling the visualization and quantification of blood flow
information at a micro level. Currently, SRUS has been
applied in various animal experiments, with several
instruments having been commercialized [6, 7], dem-
onstrating the potential of using SRUS in clinical prac-
tice. Consequently, this article aims to review the latest
advancements in the applications of SRUS.

Proposal of the concept of SRUS

SRUS originated in the 1980s as a technique for separat-
ing echoes from sources located closer than the classi-
cal diffraction limit [8]. Its resolution is constrained by
the wavelength; a decrease in wavelength leads to a sig-
nificant increase in ultrasound absorption, which con-
sequently limits imaging depth. Therefore, in clinical
applications, the resolution limit of ultrasound imaging
is typically maintained at the hundred-micron level [9].
The advancement of SRUS microvascular imaging has
been facilitated by progress in optical imaging tech-
nology. In 2006, novel methods capable of overcoming
the optical diffraction limit were introduced, including
fluorescence photoactivated localization microscopy,
photoactivated localization microscopy, and stochastic
optical reconstruction microscopy [10-12]. Drawing
inspiration from these developments, SRUS technology
achieved spatial imaging with sub-wavelength resolu-
tion by determining the center of mass of each random
scintillation fluorescence source and leveraging the
systematic point spread function (PSF), in conjunc-
tion with sequential datasets captured by a high-speed
camera, resulting in spatial resolution on the order of
tens of nanometers. In 2009, Zheng et al. proposed a
method for measuring flow velocity in small blood ves-
sels using CEUS with harmonic ultrasound imaging to
track the motion of MB at a high frame rate [13]. This
technique mitigates mutual interference between MB
by observing them sequentially, which allows for the
identification of isolated sound sources in each frame.
When the radio frequency (RF) channel data or the
PSF of the beam-forming image is known, MBs can
be localized with high precision. This precision ena-
bles the generation of super-resolution microvascular
images by accumulating subwavelength localization
information. In 2011 [14], Couture et al. proposed the
concept of using ultrasound localization microscopy
(ULM) as an equivalent method to photoactivated
localization microscopy and they validated its localiza-
tion resolution in vivo in 2015 [9]. As a direct derivative
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of photoactivated localization microscopy, ULM pos-
sesses the capability to achieve super-resolution imag-
ing based on MB scattering.

Technical steps of SRUS microvascular imaging
Microbubble injection

MB possess unique acoustic properties, including high
compressibility, mobility, and nonlinear resonance, which
distinguish them from tissue scatterers [15] and render
them effective as ultrasound contrast agents [9]. The core
of MB consists of an inert gas that can be exhaled through
the lungs, eliminating the need for renal excretion [6].
They can be safely administered to patients, including
pregnant women and children, with an extremely low
incidence of adverse events [16]. Cluster injection and
drip infusion are two commonly methods for introduc-
ing MB into the body. Successful SRUS imaging enquires
a careful balance between MB concentration and data
acquisition time. Lower concentrations enhance spatial
resolution by reducing overlap, thereby aiding localiza-
tion, but they also prolong imaging time [17]. Conversely,
higher concentrations theoretically decrease imaging
time but can lead to increased spatial overlap and signal
loss due to unsuccessful localizations. Employing spar-
sity-based and deep learning methods can facilitate the
use of higher MB concentrations, ultimately enhancing
imaging efficiency [5].

Image reconstruction

After emitting B-mode ultrasound pulses into a
medium containing MBs, streaming images of the MB
are acquired at regular or ultra-fast frame rates. Image
data are collected based on a matrix or beam forma-
tion of RF data for each channel [18]. The RF channel
data is subsequently demodulated to produce in-phase
and quadrature signals, followed by the application of a
delay-and-sum algorithm for beamforming [19]. B-mode
images are generated by calculating the absolute values of
these signals.

Motion correction

Motion correction is essential for preserving image qual-
ity and ensuring precise MB localization as imaging can
be adversely affected by factors such as breathing, heart-
beat, and tissue motion. Currently, the most prevalent
methods for motion correction include Kalman filtering
[20], deconvolution [21], phase correlation algorithms
[22, 23], spatial-temporal clutter filtering techniques
[24], and Doppler-based motion estimation techniques
[25]. However, in animal experiments, anesthesia is fre-
quently employed to immobilize the subjects. The choice
and dosage of the anesthetic can influence physiological
parameters m potentially distorting the measurements of
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ULM, such as artery diameter, density, and flow velocity,
particularly in the brain [26]. The venous supply is more
significantly impacted by anesthesia than the arterial sup-
ply, with the midbrain exhibiting the most pronounced
effects [26]. To account for the movement of animals in
an awake state, which better reflects their typical physi-
ological condition, Wang et al. utilized an algorithm
known as Open 3-demensional (3D) ULM [27].

Microbubble detection

Separating MB from the surrounding tissue is a crucial
step that ensures accurate mapping of the final image
by creating suitable areas for more precise localization.
Excessive error signals are a primary source of image
noise and can disrupt the subsequent filtering process
[18]. The frequency employed, which is influenced by the
imaging depth, often dictates the method used to extract
MB signals. At higher frequencies, MB exhibit poor reso-
nance properties and scatter harmonics weakly, making
techniques based on MB motion or destruction more
advantageous. Additionally, separating MB from tissues
can be achieved using deep learning approaches and spa-
tiotemporal filtering through singular value decomposi-
tion [28].

Microbubble isolation

Harmonic imaging [29], differential imaging [30], pulse
inversion, amplitude modulation [29, 31], and MB sig-
nal separation approaches [32] have been employed in
early research to differentiate MB, with the last one sig-
nificantly improve the accuracy and efficiency of detect-
ing MB events within a short acquisition time. However,
reducing the concentration of MB in the blood remains
the simplest and most effective method for achieving
successful signal separation. Continuous injections of
MB help maintain a stable concentration, thereby mini-
mizing the likelihood of signal overlap.

Localization

To obtain accurate coordinates, Gaussian fitting [33],
normalized cross-correlation [34], and centroid methods
[35] are widely utilized classical localization approaches.
Recent advancements have concentrated on improved
localization techniques, including sparse reconstruction
[36], deep learning [32], sparsity-constrained methods
[36], and linear filtering techniques [37, 38], which poten-
tially facilitate higher localization densities.

Tracking

The tracking procedure involves comparing MB across
frames to ascertain the trajectories after establishing their
locations in each frame. Various methods, including dig-
ital-to-analog tracking techniques [25], spatial-temporal
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singular value decomposition approaches [36, 39], Hun-
garian or Kuhn-Munkres algorithms [24], and Kalman fil-
ter [40] can be employed for this purpose.

Visualization

An appropriate interpolation factor must be selected to
construct the pixel grid necessary for transforming MB
trajectories into super-resolution images. A coarse grid
may lead to inaccurate vessel merging and loss of infor-
mation, while an excessively fine grid can result in blank
spaces within the vessels [15]. Lyu et al. proposed the
ARU-GAN model, which integrates residual connectivity
and attention mechanisms to enhance super-resolution
reconstruction tasks [41]. This innovation effectively
addresses several challenges in plane-wave ultrasound
imaging, including poor image quality, high noise levels,
and insufficient contrast.

Microvascular parameters generated by SRUS

SRUS achieves approximately a tenfold enhancement in
vascular imaging resolution compared to conventional
ultrasound imaging [42], while maintaining imaging
penetration depth. This advancement effectively circum-
vents the traditional trade-off between imaging resolu-
tion and depth. By tracking the trajectory of MB in blood
flow, SRUS can infer both the velocity and direction of
micro-blood flow, with a broad spectrum of blood flow
velocities, ranging from approximately 1 mm/s to sev-
eral cm/s [17], allowing for a clearer and more intuitive
observation of the microvascular network. However,
this capability cannot be achieved by CDFI, SMI, or
CEUS. This Furthermore, it mitigates errors caused by
traditional Doppler ultrasound, which often arise from
angular dependence and spectral spreading [43-45].
This technology can produce detailed maps of microvas-
cular density, blood flow direction, velocity, and micro-
vascular angles, thereby comprehensively revealing the
morphology and hemodynamic characteristics of micro-
circulation (Fig. 1). It quantifies parameters such as vessel
density ratio, velocity, complexity, curvature, and perfu-
sion index, providing new insights into the noninvasive
acquisition of multidimensional microvascular patholog-
ical information and functional assessment of tissue and
organs.

Applications of SRUS imaging

SRUS provides a novel imaging foundation for the indi-
rect assessment of organ and tissue functional status by
visualizing microvessel morphology and characterizing
structural and functional alterations. Currently, SRUS
has been utilized in both animal experiments and clini-
cal research targeting major systemic diseases, and the
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Fig. 1 Representative midbrain images of male SD rat generated by super-resolution ultrasound imaging. A-D represents the vascular density
map, vascular orientation map, vascular velocity map, and blood flow angle map, respectively

application/research status of SRUS in various systems is
summarized in Tablel.

Neurology

To sustain intracellular homeostasis, the metabolic pro-
cesses of the central nervous system must tightly regulate
the release of metabolites and the delivery of nutrients.
Neurovascular coupling (NVC) ensures that local blood
flow is supplied during neuronal activity to meet energy
demands, which is essential for preserving this dynamic
equilibrium. Conventional wisdom suggests that the
ultrasound does not accurately reflect neuronal activ-
ity and function. However, both animal experiments and
clinical studies have demonstrated that the emergence of
SRUS offers a novel perspective for non-invasive assess-
ment of NVC [46, 47].

Age-related changes in the cerebral microcirculation

The inaugural intracranial application of SRUS in clini-
cal was pioneered in 2021 by Demené et al., who adeptly
harnessed this technology for aneurysm diagnosis (Fig. 2)
[47]. Employing a phased array ultrasound probe with a
center frequency of 2.93 MHz, SRUS achieved a remark-
able imaging depth of up to 120 mm, thereby encom-
passing the contralateral cerebral cortex. This technique
revealed blood flow vortices within the aneurysm as well
as the direction and speed of collateral artery blood flow.
Compared to traditional transcranial sonography and
transcranial color-coded sonography, SRUS can display
finer vascular structures while maintaining an equivalent
penetration depth. This advancement offers a novel tech-
nology for the non-invasive revelation of microcircula-
tion abnormalities.

Lowerison et al. utilized SRUS to demonstrate the
physiological changes in cerebral microcirculation asso-
ciated with aging [19]. In aged mice, a pronounced reduc-
tion in global cerebral blood flow velocity was observed,
particularly accentuated in the visual cortex and superior
colliculus, and vessel tortuosity in the cerebral cortex sig-
nificantly increased. Yan L et al. reconstructed cerebral

microvessels at a resolution of 0.7 mm in monkey [48],
and Xing et al. successfully employed 3D ULM to obtain
high-resolution transcranial imaging of the macaque
brain, achieving a resolution of up to 60.4 um under cra-
niotomy and dural incision [49]. These two reports repre-
sent the application of SRUS in primates, paving the way
for clinical application of ULM.

Neurodegeneration disease

Alzheimer’s disease (AD) is the most prevalent neuro-
degenerative disorder, primarily characterized by the
deposition of AP plaques, and clinical manifestations of
dementia. Utilizing the 5xFAD transgenic mouse model,
Lowerison et al. [50] and Lin HM et al. [23] investigated
the connection between AP pathology and the structural
and functional alterations of the cerebral vasculature
in this AD animal model using ULM. The former study
focused more on the temporal relationship between early
dysfunction, namely decreased blood flow velocity, and
structural changes, specifically decreased vascular den-
sity discovering that structural defects in localized vascu-
lar density preceded functional decreases in hippocampal
and internal olfactory flow velocities. In contrast, the lat-
ter study examined the influence of the progression of
AD on various brain regions, particularly the posterior
medial cortex, both spatially and temporally, as well as
the association between vascular changes, Ap pathology,
and disruption of the blood—brain barrier.

Assessment of intracranial pressure

The status of cerebral perfusion is crucial for maintaining
stable intracranial pressure (ICP), with both parameters
being indirectly linked to prognosis and clinical deci-
sion-making in various neurosurgical conditions. SRUS
facilitates bedside assessment of cerebral microperfusion,
enabling early evaluation of neurofunctional recovery
and avoiding overly optimistic interpretations derived
from conventional angiography or ICP monitoring [51].
By integrating a clinical CEUS system with particle
tracking velocimetry, Zhang et al. successfully achieved
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d # transducer

Fig. 2 The first application of super-resolution ultrasound imaging in the human brain. Panels a—f show the steps involved in transducer
positioning, field of view establishment, the backscatter of isolated microbubbles as circular waves towards the transducer, aberration correction,
image reconstruction, and the localization of individual bubbles, respectively. Panels g and h display the corresponding images in the density map
of ultrasound localization microscopy and the color map of transcranial color-coded sonography, respectively. The green arrows indicate landmarks.
Panels i presents a zoomed image of panel g. (reprineted from Demené et al. [47])

noninvasive ICP monitoring in hydrocephalic pediat-
ric pig models [52]. In their study, cerebral perfusion
was quantified using time-averaged velocity in macro-
vessels, as well as a cerebral microcirculation parameter
that accounts for the concentration of micro-vessels and
their velocity. The results demonstrated a strong correla-
tion between cerebral perfusion and ICP (R?>0.85). In
cases of cerebral ischemia, when ICP exceeds 50% of the
mean arterial pressure, the non-dimensionalized cortical

microperfusion decreases significantly, by an order of
magnitude. This significant reduction in microperfusion
can be attributed to the collapse and/or deformation of
microvessels due to increased ICP. Such a correlation
allows for the inference of ICP levels from changes in cer-
ebral microcirculation parameters [52]. These advance-
ments present a noninvasive method for ICP monitoring,
significantly enhancing the early detection and manage-
ment of ischemic brain injury in clinical practice.
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Stroke

SRUS has also been utilized in studies addressing stroke,
the second leading cause of mortality. Hingot et al. con-
ducted a comparative analysis of monitoring results from
7 T MRI and ultra-fast ultrasound for thrombotic stroke
[53]. Their findings indicated that in mouse models, ultra-
fast ultrasound imaging, including ultra-fast Doppler and
ULM, yielded results comparable to those obtained from
MRI. The regions of ischemic damage identified exhibited
a high degree of consistency between the two imaging
modalities. Furthermore, ultra-fast ultrasound provided
more detailed cerebrovascular imaging, effectively delin-
eating the location and extent of hypoperfusion regions.
This underscores its potential for non-invasive assess-
ment of post-stroke treatment efficacy.

Another study conducted using mouse model of stroke
combined nanodroplet imaging with ULM [54], propos-
ing a novel method for detecting hemorrhagic area. This
approach utilizes ultrasound-activated nanodroplets that
extravasate and accumulate at the site of hemorrhage to
facilitate bleeding detection.

Spinal cord imaging

SRUS was also employed to elucidate the characteris-
tics of vascular blood flow changes following spinal cord
injury (SCI) in rats at various segments [55]. A total of
9 SD rats were utilized to establish SCI models at differ-
ent segments using a 50 g aneurysm clip. SRUS revealed
that, following SCI, vascular blood flow exhibited distinct
changes across different segments of the rats. Specifically,
the same injury resulted in the most severe damage to
blood vessels in the thoracic spinal cord, followed by the
lumbar spinal cord, while the cervical spinal cord exhib-
ited the least damage.

Digestive system
In the diagnosis and assessment of gastrointestinal disor-
ders, particularly those affecting the liver and pancreas,
SRUS has demonstrated considerable promise. Huang
et al. investigated the application of SRUS across various
human tissues, including healthy livers, livers with acute
chronic liver failure, and pancreatic tumors [20]. The
SRUS imaging of healthy livers revealed a coherent and
systematic vascular network, characterized by smooth
transitions between main and branch vessels. In contrast,
livers affected by acute and chronic liver damage exhib-
ited distorted and abnormal vascular formations, char-
acterized by constricted branches and even main vessels,
resulting in a disordered vascular pattern. These altera-
tions may be closely linked to the pathophysiological
mechanisms underlying liver failure.

Given the pivotal role of angiogenesis in tumor pro-
gression, SRUS has emerged as a powerful tool capable
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of delineating microvascular structures and flow veloci-
ties with remarkable precision. This capability positions
SRUS a promising method for differentiating between
benign and malignant lesions, as well as evaluation treat-
ment efficacy through the analysis of vascular quantity,
morphology, distribution, and hemodynamic parame-
ters. The intricate hypervascular distribution and central
malformed vascular shunting observed in focal nodular
hyperplasia via SRUS correspond with established patho-
logical features (Fig. 3) [56]. Notably, pancreatic tumors
imaged at depths of up to 60 mm exhibit increased
microvascular density, with altered vascular structure
and orientations potentially indicative of tumor growth
and aggressiveness [20]. Furthermore, the presence of
distorted and thinned vascular structures results in a sig-
nificant reduction in blood flow velocity within certain
tumor vessels, adversely impacting the tumor’s blood
supply. In the context of treatment response, Brown et al.
noted that, 14 days post-surgery, complete responders in
a hepatocellular rat model displayed significantly lower
microvascular density and smaller tumor sizes com-
pared to partial responders or controls [57]. Additionally,
Zhang et al. demonstrated that, despite continued tumor
expansion accompanied by high blood flow velocities
and a radial pattern at the periphery, there was a signifi-
cant decrease in blood flow velocity and vascularization
within the tumor core following sorafenib treatment in
anti-angiogenic therapy. This was characterized by fewer
microvascular events and no notable changes in blood
flow direction [58]. The application of SRUS in the liver
and pancreas presents a new opportunity for advancing
SRUS in conjunction with gastrointestinal endoscopy,
thereby facilitating the diagnosis and treatment of non-
invasive gastrointestinal diseases in the future.

Nephrology

The impairment of renal microvascular perfusion is a sig-
nificant factor in the progression of chronic kidney dis-
ease (CKD) and renal fibrosis. Consequently, the detailed
microvascular network described by ULM imaging, along
with the quantitative microvascular perfusion param-
eters it provides, particularly for the ability to observe
MB flow pattern in the glomeruli in living humans and
rats [59], may be more beneficial for assessing chronic
kidney diseases compared to CEUS. Andersen et al. dem-
onstrated the utility of SRUS in renal ischemia/reperfu-
sion experiments conducted in rats [60]. After 60 min of
reperfusion, SRUS revealed varying degrees of microvas-
cular perfusion recovery. In mice subjected to unilateral
ischemia—reperfusion injury [61], kidneys affected by
ischemia—reperfusion injury exhibited increased vascu-
lar thinning, reduced kidney size, decreased vessel den-
sity, diminished blood volume, and heightened cortical
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Fig. 3 The super-resolution ultrasound imaging of a focal nodular hyperplasia case in a 38-year-old woman. A, B-mode ultrasonic image

of the mass; B, the density map shows abundant microvessels within the nodule; C, the blood flow velocity map indicates that the velocity
at the center of the nodule is higher than that at the periphery (white arrows), with redder colors representing higher flow velocities; D,

the direction map reveals a radial blood flow pattern with varying direction, red and blue indicate flow toward and away from the transducer,

respectively). (Reprineted from Zeng et al. [56])

vessel tortuosity over time. In human experiments [6],
significantly reduced cortical microvascular density was
detected by SRUS in the acute kidney injury group, show-
ing a negative correlation with serum creatinine levels.
Diabetes mellitus and hypertension are the primary
causes of CKD. Sggaard et al. found that Zucker diabetic
fatty rat exhibited a significant reduction in renal corti-
cal vessel density, which was accompanied by a notable
increase in proteinuria levels; however, the mean vascu-
lar tortuosity index did not differ significantly among the
groups [62]. In the context of hypertensive nephrosclero-
sis, Qiu et al. identified significant higher arteriolar mean
blood flow velocities in spontaneously hypertensive rats
compared to the Wistar-Kyoto rats [63]. Furthermore,
the ability of SRUS to visualize microvascular has been
applied in renal cell carcinoma model to find an alter-
native imaging biomarker for intra-tumor hypoxia [64]

and in human renal transplant patients to better assess
immune rejection [65]. Using the renal H-scan tech-
nique, Hysi et al’s initial evaluation of transplanted renal
fibrosis in humans allows for quick, precise, and noninva-
sive measurement of the burden of whole kidney fibrosis
in both people and mice [66]. The utilization of 3D ULM
in rat kidneys has allowed precise volumetric reconstruc-
tion of microvascular networks, enabling a comprehen-
sive examination of MB dynamics within both the vasa
recta of the medulla and the nephrons [67].

Reproductive system

The use of SRUS in the reproductive system presents a
groundbreaking monitoring tool for forthcoming treat-
ments of senile vaginitis and premature ovarian fail-
ure, as well as for elucidating the relationship between
micro-perfusion and ovarian and vaginal function. In an
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experiment conducted by Kanoulas et al. on sheep ova-
ries, SRUS effectively evaluated the richness and distri-
bution of blood flow by detecting blood vessels as small
as 60 um, thereby clearly visualizing the microvascular
architecture within the ovaries [68]. Furthermore, Wang
et al. compared the urethral vascular characteristics fea-
tures of pre-menopausal and post-menopausal women
using SRUS [69]. Several urethral vascular metrics,
including fractal dimension, vascular ratio, average vas-
cular diameter, maximum blood flow velocity, average
blood flow velocity, and vascular tortuosity index were
extracted from high-resolution images. Compared to fer-
tile women, the first three parameters were significantly
reduced in postmenopausal women. Additionally, these
metrics exhibited a trend of increasing with age, followed
by a decline. This research provided vital evidence for a
deeper understanding of the pathophysiological causes
of female urinary incontinence by emphasizing the sig-
nificant role of urethral blood vessels in female urinary
control and examining their changes post-menopause.
Nonetheless, infertility may also arise from dysfunctions
in male reproductive organs; hence, further research uti-
lizing SRUS in individuals with oligospermia, poor sperm
quality, and sexual dysfunction is warranted.

Immune system

As one of the major immune organs, changes in the
microcirculation of lymph nodes may serve as predictors
of metastasis. For the first time, Zhu et al. employed 3D
SRUS on rabbit lymph nodes in 2019, enabling noninva-
sive, high-resolution imaging of the microvessels within
these nodes [70]. Subsequently, in 2022, the team con-
ducted SRUS on four patients with benign lymph nodes
and six patients with metastatic lymph nodes [71]. Their
findings indicated that, compared to metastatic lymph
nodes, benign lymph nodes exhibited slightly higher
mean micro-blood flow velocities, along with lower
mean microvessel density and localized flow directional
irregularities.

Cardiovascular system

Historically, myocardial perfusion has been evaluated
through coronary angiography, a procedure that involves
radiation exposure. In contrast, myocardial ULM may
non-invasively enhance our understanding of myocardial
microcirculation. Yan et al. were pioneers in employing
for both in vitro and in vivo cardiac ULM imaging, con-
ducting studies on two porcine hearts and four human
patients [28]. Their findings demonstrated a high level of
consistency between the results obtained from SRUS and
those from computed tomography angiography. How-
ever, in human experiments, participants were instructed
to hold their breath to minimize the effects of respiratory
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motion on cardiac movement, resulting in the collec-
tion of only 10 s of data. In the resulting images, certain
myocardial regions exhibited an absence of microcircula-
tory blood flow signals. Further repetitions and external
experiments are necessary to elucidate the reasons for
the lack of micro-blood flow signals in these regions.

Neovascularization plays a crucial role in the vulner-
ability of carotid plaques, which are major causes of
ischemic stroke [72]. In a study utilizing a rabbit model
of atherosclerosis, SRUS quantified intra-plaque trophic
vascularization through metrics based on blood flow
density ratios [73]. Compared to traditional methods that
rely on subjective visual assessments by the human eye
to evaluate plaque enhancement in CEUS, SRUS is antici-
pated to mitigate the limitations associated with incon-
sistent grading criteria, evolving into a new approach for
assessing intra-plaque neovascularization with reduced
operator dependence and enhanced standardization
[74, 75]. Additionally, Goudot et al. conducted SRUS in
5 patients with active Takayasu’s arteritis (TA) and 11
patients with quiescent TA [76]. They observed visuali-
zation of microvessels within the thickened carotid wall,
which correlated with the activity of TA.

These approaches may contribute to future aggressive
prevention and treatment of ischemic stroke and myo-
cardial infarction by targeting diseased microvessels.
The integration of ULM with intravascular ultrasound
is anticipated to yield novel diagnostic and therapeutic
tools for cardiovascular diseases, particularly concerning
coronary atherosclerosis, which is currently assessed in a
limited capacity by conventional cardiac ultrasound.

Eyes

In the visual system, SRUS is invaluable for assessing
blood flow velocity and intraocular microvessels as small
as 54 pm, which is essential for the early identification of
retinal and optic nerve disorders [77]. Through the moni-
toring of intraocular blood flow, both Qian et al. [78] and
UI Banna et al. [79] observed that as intraocular pressure
increased, vessel density and flow velocity decreased.
The high resolution of SRUS is comparable with optical
coherence tomography angiography. Furthermore, SRUS
technology allows for high-resolution observation of the
microvascular structure and blood flow velocity through-
out the entire eye, facilitating the early detection of ocu-
lar choroidal melanoma [21].

Superficial organ

The application of SRUS in superficial organs primarily
leverages microvascular data to differentiate between
benign and malignant and to evaluate the therapeutic
efficacy post-treatment (Fig. 4) [80]. Research indi-
cates that benign thyroid nodules exhibit significantly
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Fig. 4 3-dimensional ultrasound localization microscopy revealed morphological changes in microcirculation within a glioblastoma cancer model
before and after anti-angiogenic treatment (A treatment group; B control group). Notably, just 1 day after the initial injection of bevacizumab,
a pronounced vascular normalization effect was observed in the treatment group. In contrast, micro-vessel density continued to increase

in the control group. (Reprineted from Yin et al. [80])

higher microvascular flow rates and microvessel densi-
ties compared to malignant ones [81]. This distinction
arises primarily from the typically adequate blood sup-
ply feature of malignant thyroid nodules. In contrast,
while malignant breast tumors achieve peak enhance-
ment more rapidly than benign tumors, they also dis-
play significant higher microvascular flow rates and
microvessel densities [20, 82]. However, these studies
did not compare the diagnostic performance of various
ultrasound modalities in the differential diagnosis of
thyroid/breast masses.

Further study by Opacic et al. have indicated that ULM
technology can be employed to monitor post-treatment
outcomes [83]. In case of triple negative breast carci-
noma, vascularization was predominantly observed in
the peripheral regions of the tumor, with only moderate
vascular presence in the core and no apparent directional
flow prior to treatment. After three cycles of neoadju-
vant chemotherapy, a reduction in tumor volume was

accompanied by a sustained improvement in vasculariza-
tion levels.

Skeletal-muscular system

Through the application of SRUS, Ghosh et al. demon-
strated distinct patterns of skeletal muscle microvascu-
lar responses to insulin stimulation by comparing the
microvessel enlargement of and blood flow augmen-
tation between lean and obese mice models [84]. The
study revealed significant microvessel recruitment in the
skeletal muscles of young, lean mice following insulin
administration, indicating that insulin effectively induces
microvascular dilation and enhances perfusion in this
group, thereby improving muscular glucose uptake. Con-
versely, aged obese mice exhibited diminished microves-
sel recruitment in response to insulin, suggesting a
potential connection between obesity-associated insulin
resistance, and impaired insulin-mediated microvascu-
lar dilation. Compared to the parameters derived from
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time-intensity curve generated by CEUS, the coefficients
of variation of the time MB count curve-derived param-
eters from SRUS were considerably lower. This discrep-
ancy may stem from difference in the post-processing
procedures between SRUS and CEUS.

Limitations and prospects of SRUS

As an emerging imaging technique, SRUS imaging is
undergoing continuous optimization. However, this
novel technology still has several limitations. Firstly,
acquiring high-frame-rate image information during
the imaging process is crucial for capturing the motion
trajectory of each MB, which leads to prolonged recon-
struction times and increased memory usage. Although
deep learning shows considerable promise in handling
data, challenges remain, such as the scarcity of training
data requiring a ground truth, and discrepancies between
training data and actual data [85]. Secondly, the challenge
of determining the optimal timing for image acquisition
and reconstruction to accurately reflect of the physiologi-
cal state of organ tissues remains unresolved. This issue
is particularly critical because MB is expelled during the
respiratory process, resulting in a gradual decrease in
their concentration within the tissues. Thirdly, compared
to CDFI and CEUS, the imaging process of ULM is pri-
marily not real-time, thus limiting the dynamic obser-
vation of microcirculation. The interpretability of ULM
parameters requires further elucidation, such as valida-
tion through pathological or other imaging methods.
Furthermore, in the application of SRUS within the cen-
tral nervous system, the acoustic beam faces challenges
such as attenuation, phase aberration, and propagation
difficulties during transmission. The disparity in sound
velocity and tissue density between the skull and brain,
along with the complex heterogeneous structure of the
human skull, contribute to significant distortion of the
MB signal, resulting in considerable localization uncer-
tainty. Research into flexible metamaterials has addressed
the compatibility issues associated with traditional rigid
materials, significantly improving the transcranial trans-
mission rate of acoustic waves [86]. This advancement
lays a crucial experimental foundation for the applica-
tion of SRUS in the neurological field. Looking ahead,
the combination of SRUS with functional ultrasound
and brain-computer interfaces may unveil new avenues
for neuroscience research. Moreover, the integration of
SRUS with nanodroplets may offer innovative approaches
to tumor treatment and efficacy monitoring.

Conclusion

In the past decade, SRUS technology has successfully
surpassed the diffraction barrier of ultrasound imaging,
overcoming the limitations associated with traditional
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resolution. This advancement has enabled high-precision
imaging of micro-blood flow and comprehensive assess-
ment and monitoring of its structural and functional
alterations, thereby providing a robust means for eluci-
dating the mechanisms underlying disease generation
and development. Although the imaging process and
practical applications of SRUS still encounter numerous
challenges, current research suggests that SRUS demon-
strates significant potential in disease diagnosis, assess-
ment, treatment, and efficacy monitoring.
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