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Abstract

As a crucial medical imaging modality, ultrasonography has emerged as a pivotal tool for tumor diagnosis

and treatment owing to its non-invasive nature, real-time imaging capability, and superior resolution. Recent
technological advancements have demonstrated unique advantages in early tumor screening, staging, and
localization. Contrast-enhanced ultrasound (CEUS), utilizing microbubbles (MBs) and nanobubbles (NBs) to
target vascular biomarkers, significantly enhances tumor visualization and demonstrates high sensitivity in
molecular imaging. Multimodal ultrasound (MU), incorporating techniques such as elastography and automated
breast volume scanning (ABVS), achieves improved diagnostic accuracy when combined with MRI/CT. The
applications of ultrasound in localized and systemic tumor therapy have expanded considerably. High-intensity
focused ultrasound (HIFU) enables thermal ablation of solid tumors, while low-intensity focused ultrasound
(LIFV) facilitates sonodynamic therapy (SDT) through reactive oxygen species (ROS) generation mediated by
sonosensitizers. Ultrasound-assisted drug delivery systems (US-DDS) leverage MB/NB cavitation effects to enhance
chemotherapeutic agent delivery efficiency, overcome biological barriers, including the blood-brain barrier, and
modulate immune responses. These technological breakthroughs have provided novel therapeutic options for
cancer patients, garnering significant clinical interest. This review systematically examines current applications
of ultrasound imaging and therapy in oncology, evaluates its potential clinical value, analyzes existing technical
limitations, and discusses future development prospects. The article aims to provide innovative perspectives for
tumor diagnosis and treatment while offering references for clinical practice.
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Introduction

Globally, tumors represent a major public health con-
cern due to their rising incidence and high mortality
rates. Recent epidemiological data indicate that tumors
have become the second leading cause of death world-
wide, significantly affecting patients’ quality of life and
imposing considerable social and economic burdens on
healthcare systems. Consequently, there is a critical need
for effective strategies in early screening, accurate diag-
nosis, and advanced therapeutic approaches to improve
patient prognosis and survival rates [1, 2]. In recent
years, advancements in ultrasound (US) technology have
significantly expanded its role in tumor management,
ranging from diagnostic imaging to complex interven-
tional procedures. US offers real-time, non-invasive
imaging with high sensitivity and specificity, making it a
widely adopted tool in clinical practice. It enables precise
localization of tumors during biopsies and interventional
treatments. Moreover, the therapeutic use of US has
steadily increased, including US-guided tumor localiza-
tion, ablation, and the targeted delivery of chemothera-
peutic agents, thereby providing innovative treatment
options for cancer patients. This article aims to provide
a reference for current clinical applications and explore
future advancements in US technology to enhance its
value in tumor diagnosis and treatment (Fig. 1).
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Fig. 1 Role of Ultrasound in Tumor Management
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Application of US imaging in tumor diagnosis

Basic principles of US imaging technology and clinical
applications

US refers to sound waves with frequencies above the
human hearing threshold (greater than 20 kHz) and is
characterized by high resolution, deep tissue penetra-
tion, efficient energy conversion, and rapid propagation
speed. US imaging leverages these properties by emitting
high-frequency sound waves and capturing their echoes
to generate images. As these waves travel through tis-
sues with different densities and elasticities, variations
in propagation speed and reflection intensity occur. The
US probe detects the reflected signals and converts them
into electrical impulses, which are then processed by a
computer to produce visual images commonly used in
clinical diagnostics [3].

Early diagnosis and accurate tumor staging are critical
for improving treatment outcomes and patient survival
rates. Conventional imaging techniques such as mag-
netic resonance imaging (MRI), computed tomography
(CT), and X-rays play essential roles in tumor identifi-
cation and staging. However, each of these modalities
has inherent limitations, including exposure to ioniz-
ing radiation, prolonged imaging times, and inadequate
resolution for certain tumor tissues. As a result, the
search for safer and more efficient imaging methods has
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become a major focus of research. US has gained increas-
ing prominence in tumor monitoring and early screen-
ing due to its non-invasive nature, real-time imaging
capabilities, and portability [4]. Multimodal US (MU),
which integrates various US technologies, has emerged
as a powerful tool for enhancing the accuracy of tumor
detection and treatment planning. Recent advances
in US technology have elevated MU to a pivotal role in
tumor diagnostics, improving tumor visualization and
providing critical information during real-time monitor-
ing to support clinical decision-making [5]. For instance,
MU demonstrated a sensitivity of 97.85% in diagnosing
benign and malignant liver tumors, compared to 82.56%,
92.39%, and 87.14% for single US, contrast-enhanced US
(CEUS), and shear wave elastography (SWE), respectively
[6]. In another study, Ma et al. developed a MUmodel
combining an automated breast volume scanner (ABVS)
and strain elastography (SE) with B-mode US features,
which enhanced the differentiation between benign and
malignant breast tumors [7]. Furthermore, multimodal
imaging that combines US with MRI and CT has shown
significant advantages in tumor diagnosis. For example,
in the evaluation of suspected ovarian tumors, US serves
as the first-line imaging modality. However, MRI is essen-
tial as a second-line tool for characterizing indetermi-
nate adnexal masses, given the overlapping US features
of various ovarian lesions. When either US or MRI raises
suspicion of ovarian cancer, the International Federation
of Gynecology and Obstetrics recommends using CECT
to assess disease extent. This imaging strategy provides
clinically relevant information such as the degree of pri-
mary tumor spread, presence of peritoneal implants,
and the size and location of lymph nodes—all crucial for
treatment planning and assessing the feasibility of cyto-
reductive surgery [8]. Therefore, the combined use of US,
CT, and MRI enhances diagnostic accuracy and reliability
throughout the various stages of tumor assessment.

The role of CEUS in tumors

Technological advancements have enabled US imag-
ing to support multimodal, comprehensive assessments
across a wide range of tissues and organs, highlighting
its substantial potential for the early screening of spe-
cific tumor types. CEUS is a diagnostic technique that
involves the intravenous injection of US contrast agents
(UCAs), followed by the emission of sound waves from
the US transducer. UCAs produce nonlinear acoustic
responses, whereas surrounding tissues primarily gener-
ate linear signals. This difference enhances tissue contrast
by suppressing the linear components from the tissue
background and amplifying the nonlinear signals from
the contrast agents [2]. CEUS is based on the evaluation
of microvascular architecture and the relative contrast
enhancement of the target lesion compared to adjacent
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healthy tissues, thereby assisting clinicians in character-
izing tumors and determining their stage [9].

CEUS based on microbubbles (MBs)

Lipid-shelled, gas-filled MBs are the most commonly
used UCAs in clinical practice to enhance the image
quality of CEUS. Several commercially available UCAs—
such as Levovist, Definity, Optison, Sonazoid, and Son-
oVue—have received approval for clinical use by the U.S.
Food and drug administration (FDA) [10]. Previous stud-
ies have demonstrated that CEUS can effectively differ-
entiate between benign and malignant ovarian tumors,
achieving sensitivities and specificities of 90% and 85%,
respectively [11]. Additionally, CEendoscopic US has
shown high sensitivity in evaluating the microvascular
density of pancreatic tumors, where reduced vascular
density may indicate greater tumor aggressiveness in
patients with non-functional pancreatic neuroendo-
crine tumors [12]. Notably, Cui et al. successfully identi-
fied sentinel lymph nodes (SLNs) in early breast cancer
patients using Sonazoid, reporting a detection rate of
100%, with a sensitivity of 92.31% for identifying non-
involved SLNs and a negative predictive value of 96.79%
[13]. The early diagnosis of lung cancer remains clinically
challenging, particularly for small nodules or early-stage
lesions. CEUS is gaining recognition for its utility in lung
cancer diagnosis, as it can enhance visualization of blood
flow within lesions, assess vascular supply, determine the
extent of tumor infiltration, and evaluate spatial relation-
ships with surrounding tissues [14, 15]. Moreover, CEUS
can guide puncture biopsies of lung lesions, thereby
increasing sampling accuracy and success rates [16]. In a
study involving 127 patients with ductal carcinoma in situ
(DCIS), CEUS significantly improved lesion detection by
providing clearer lesion boundaries and more detailed
blood flow characteristics [13]. Progress has also been
made in the development of targeted MBs for CEUS. For
example, Hu et al. designed a novel vascular-targeted
contrast agent, B7-H3, aimed at preventing breast can-
cer metastasis and facilitating targeted SLN removal [17].
In a mouse model, they tested the agent using 21 MHz
CEUS to image both metastatic and non-metastatic
SLNs, yielding stronger imaging signals. However, the
continued advancement of CEUS remains limited by
intrinsic challenges associated with MBs, including short
lifespan, low stability, and size heterogeneity [18].

US molecular imaging

MBs, typically ranging in size from 1 to 10 um, are lim-
ited in their imaging applications to the vascular system
due to constraints such as short circulation time and
limited structural control [19, 20]. In contrast, US con-
trast agents with smaller diameters offer improved tis-
sue penetration and can overcome these limitations [21,
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22]. Nanobubbles (NBs), also referred to as submicron
or nanoscale bubbles, are present in some commercial
microbubble formulations, such as Definity®. The devel-
opment of US NBs was initiated by Wheatley et al. in
2004, with their first in vivo activity demonstrated in
2006 [23, 24]. Since then, the application of NBs as con-
trast agents in biomedical ultrasonography has gained
increasing recognition. Notably, Rapoport et al. reported
the selective imaging of tumor stroma using NBs [25].
However, widespread use of US NBs did not begin until
around 2010, when their potential in tumor imaging
began to be highlighted in several studies [26—29]. More
recently, US molecular imaging has emerged as a promi-
nent research focus within the context of CEUS. This
approach involves the construction of targeted acous-
tic contrast agents by conjugating specific antibodies
or ligands to the surface of the contrast agent, enabling
active binding to designated targets and facilitating
highly specific molecular imaging. This advancement
significantly improves the sensitivity and accuracy of US
diagnostics, and numerous preclinical and clinical stud-
ies are currently exploring its broad range of applications
(Table 1).

Certain molecules are overexpressed in tumors and can
serve as targets for quantifying US contrast signals. As a
result, molecular US imaging can detect signal changes
before any visible morphological alterations occur in the
tumor. This approach also allows for the evaluation of
treatment responses to anti-angiogenic therapy, radio-
therapy, and conventional chemotherapy. Vascular endo-
thelial growth factor receptor 2 (VEGFR2), the primary
receptor for VEGE, is highly expressed on the surface of
neovascular endothelial cells within tumors. Its expres-
sion is closely associated with tumor prognosis and
metastatic potential. Smeenge et al. [30] were the first to
demonstrate contrast enhancement in prostate lesions
using BR55, an US molecular contrast agent targeting
VEGEFR2. The feasibility and safety of BR55 were later
confirmed in clinical studies for breast cancer [31] and
liver cancer [32]. Additionally, Wang et al. [33]reported
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that prostate-specific membrane antigen (PSMA)-tar-
geted nanobubbles could enhance the extravasation and
retention of PSMA-expressing tumors. Other research-
ers have shown that nanobubbles coated with polyethyl-
ene glycol (PEG) or a combination of PEG and hyaluronic
acid (HA) can evade the reticuloendothelial system (RES)
and penetrate tumor vasculature via the enhanced per-
meability and retention (EPR) effect [34, 35]. Further-
more, epithelial-mesenchymal transition (EMT), a key
driver of tumor metastasis, is characterized by decreased
expression of E-cadherin and increased expression of
N-cadherin [36, 37]. Targeted gas vesicles (GVs) directed
at E-cadherin and N-cadherin (E-cad-GVs and N-cad-
GVs) have been employed to assess EMT status and
tumor metastatic potential [38] (Fig. 2A—C). These GVs
can cross vascular barriers, specifically bind to can-
cer cells, and produce strong contrast imaging signals,
demonstrating excellent tumor-targeting capabilities
and offering a promising strategy for early detection of
metastatic lesions. In parallel, programmed death-ligand
1 (PD-L1) is expressed in a variety of tumors, including
melanoma, non-small cell lung cancer, Merkel cell carci-
noma, breast cancer, and squamous cell carcinoma. The
PD-1/PD-L1 axis suppresses T-cell activity in the tumor
microenvironment, allowing tumors to escape immune
surveillance. To target this pathway, Kumar et al. [39]
developed PD-L1-targeted nanobubbles (designated
PD-L1 FN3hPD-L1-NBs), which were covalently con-
jugated with FN3hPD-L1 nanobodies specific to human
PD-L1 (Fig. 2D). These nanobubbles enable in vivo
assessment of PD-L1 expression in the tumor microenvi-
ronment and facilitate US imaging of hPD-L1 expression.
In CT26 mouse xenograft models, FN3hPD-L1-NBs pro-
duced approximately threefold higher CEUS signals com-
pared to non-targeted nanobubbles. Histological analysis
of tumor sections stained with hematoxylin and eosin
revealed no significant tissue damage, supporting their
biocompatibility. These nanobubbles offer valuable diag-
nostic insight into PD-L1 expression levels, contributing

Table 1 Transforming ultrasound molecular imaging detection of cancers

Binding Ligands Type Diameter(nm) Detection

carbonic anhydrase IX(CAIX) nanobubble 478 +68 various malignant tumors [122]
prostate-specific membrane antigen nanobubble 27448 prostate cancer [33]

SRC homology-2(SHP2) nanobubble 535+14 thyroid cancer [123]

nucleolin (NCL) Nanobubble 459+ 37 triple-negative breast cancer [124]
poly(ethylene glycol)(PEG) gas vesicle 400-500 Lewis lung carcinoma [34]
poly(ethylene glycol) (PEG) and hyaluronic acid (HA) gas vesicle 400-500 tumor detection [35]

VEGFR2 microbubble / anti-VEGF antibody treatment [125]
chitosan nanodroplet 519+72 imaging and treatment [126]

organic anion transporting polypeptides(OATPs) nanodroplet 171457 cutaneous malignant melanoma [127]
avP3integrin microbubble / ovarian cancer using laying hens [128]
VEGFR2 microbubble / ovarian cancer [129]
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[38]. Copyright© 2023 Wiley-VCH GmbH. (D) The investigations of hPD-L1 targeted FN3hy_ ;-NBs for ultrasonic imaging. Schematics of the preparation
process and imaging performance of FN3hpp_;1-NBs via microfluidics-based reconstruction. Reproduced with permission from Ref [39]. Copyright ©
2022 Elsevier Ltd



Rui et al. The Ultrasound Journal (2025) 17:40

to more accurate prognostic evaluation and personalized
treatment planning for tumor patients.

US imaging, due to its non-invasive nature and real-
time capabilities, has become an essential tool for tumor
screening. Conventional US generates images based on
the reflection of sound waves, while CEUS employs MBs
to amplify blood flow signals, thereby improving the
visualization of tumor microvasculature. US molecular
imaging extends these capabilities by enabling early diag-
nosis and therapeutic monitoring at the molecular level
through the use of targeted nanobubbles that bind specif-
ically to tumor biomarkers such as VEGFR2 and PD-L1.
Additionally, multimodal ultrasonography integrates
multiple imaging modalities, further enhancing diag-
nostic accuracy. Collectively, these advancements dem-
onstrate significant potential in facilitating early tumor
detection, evaluating treatment efficacy, and assessing
patient prognosis.

Application of US in tumor treatment

The fundamental principle of US therapy involves the
use of sound waves to induce thermal and non-thermal
effects within tissues without causing damage to the sur-
rounding structures along the beam path [40]. The pri-
mary objectives are either to ablate pathological tissues
or to stimulate tissue regeneration, thereby slowing dis-
ease progression [41]. While US has found applications
across various medical disciplines, its role in oncology
is particularly significant. Modern strategies for treating
malignant tumors include surgery, radiotherapy, chemo-
therapy, and immunotherapy, with chemotherapy being
the most commonly employed systemic treatment. How-
ever, even the most advanced chemotherapeutic regi-
mens often fail to achieve the desired outcomes due to
obstacles such as inefficient drug delivery, tumor hetero-
geneity, and the development of drug resistance. In this
context, US is emerging as a versatile and promising tool
in cancer therapy, serving both as a stand-alone thera-
peutic modality and as an adjunct to enhance the efficacy
of existing treatments. For instance, US-mediated hyper-
thermia, particularly high-intensity focused US (HIFU),
can selectively heat and destroy tumor cells while spar-
ing adjacent healthy tissues. Moreover, US-assisted drug
delivery has shown potential in improving therapeutic
outcomes by increasing drug permeability and accu-
mulation in target tissues. With ongoing technological
advancements, the clinical applications of US therapy
continue to expand, offering new avenues for optimizing
cancer treatment [42].

Thermal therapy

The thermal effect of US therapy arises from the absorp-
tion of US energy by target tissues, resulting in local-
ized heating. Biological tissues possess specific acoustic
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absorption properties that enable a portion of the inci-
dent US energy to be converted into thermal energy,
thereby increasing tissue temperature. The degree of
temperature elevation depends on the intensity, fre-
quency, and duration of US exposure. Under constant
sound intensity, tissue temperature rises proportionally
with exposure time until a point is reached where the
increase plateaus due to thermal conduction. Once the
tissue temperature stabilizes, further increases are miti-
gated as heat diffuses to surrounding areas. This results
in a non-uniform temperature distribution, especially
when US is focused locally or when the acoustic absorp-
tion properties of tissues vary. As the temperature gra-
dient increases, thermal conduction becomes more
pronounced until thermal equilibrium is achieved. At
energy doses exceeding 55 °C, tissues undergo coagula-
tive necrosis, resulting in irreversible cell death. The ther-
mal effects of HIFU were first recognized in 1932, and
its therapeutic potential was proposed soon after [40].
HIFU can precisely deliver ultrasonic energy to targeted
lesions, generating localized hyperthermia that destroys
tumor tissues without damaging adjacent healthy struc-
tures [43]. Interest in HIFU grew substantially in the
1960s, when Fry used it to create cortical lesions in an
effort to slow the progression of Parkinson’s disease and
other movement disorders [44]. By the late 20th century,
HIFU had been adopted as a selective treatment modal-
ity in ophthalmology and neurosurgery. The development
of MRI in the 1980s further revitalized interest in HIFU
by enabling precise spatial guidance and the introduction
of MR thermometry for real-time temperature monitor-
ing [45]. A major milestone was reached in 2003 with the
introduction of the first MR-guided focused US system
(MRgFUS), laying the foundation for HIFU to become
a widely accepted therapeutic modality [46]. In recent
years, HIFU has been used to treat a range of both benign
and malignant solid tumors. Unlike traditional cancer
treatments such as chemotherapy, radiotherapy, and sur-
gery, HIFU is entirely non-invasive, extracorporeal, and
non-ionizing, making it uniquely suitable for treating
both primary and metastatic solid tumors. Over the past
decade, clinical trials using transrectal HIFU for pros-
tate cancer have demonstrated promising results at more
than 100 centers worldwide across Europe, the United
States, and Asia. Follow-up studies conducted 2 to 5
years post-treatment have shown consistently low pros-
tate-specific antigen (PSA) levels, with negative biopsy
rates ranging from 60 to 90% [47, 48]. Furthermore, clini-
cal applications of HIFU have improved prostate cancer
control rates from 50% at 8 months to approximately
90% in recent trials [49]. In addition to focal therapy,
whole-gland HIFU ablation has reduced tumor incidence
by 17-35% and tumor volume by over 90% [50]. HIFU
is especially promising for treating prostate cancer in
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patients who are obese, over 65 years of age, or ineligible
for surgery [51]. For pancreatic cancer—a disease often
diagnosed at an advanced stage with a 5-year survival
rate below 5%—HIFU has emerged as a viable treatment
option. It is applied as a standalone therapy, in combi-
nation with chemotherapy (e.g., gemcitabine), or as an
adjunct after the failure of chemotherapy or radiotherapy
[52]. Early findings from HIFU treatment have shown
encouraging results, including significant tumor vol-
ume reduction and pain relief in up to 80% of patients.
In studies involving 30 to 223 patients, average survival
reached 12.5 months (ranging from 8 months to over 3
years), with a 50% tumor reduction rate for HIFU alone
and overall response rates of 43.6% and 14.6% when com-
bined with chemotherapy [53]. Moreover, while tumor
ablation typically requires US frequencies ranging from
1 to 7 MHz, milder acoustic parameters (e.g., 960 Hz)
can be used for US-controlled genetic modulation [54]
(Fig. 3). One innovative approach involves combining
interferon-gamma (IFN-y) genes with temperature-sen-
sitive therapeutic plasmids to engineer US-responsive
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bacteria (URB) capable of secreting IFN-y during HIFU-
mediated thermal therapy. This technique has been
shown to activate IFN-y expression through US-induced
heating, thereby eliciting anti-tumor immune responses
that inhibit tumor growth and metastasis.

Sonodynamic therapy (SDT)

FUS is categorized into HIFU and low-intensity focused
US (LIFU) based on varying sound frequencies. Theo-
retically, LIFU offers many of the benefits of HIFU while
reducing the risk of tissue overheating associated with
higher frequencies, thus improving treatment safety.
In 1989, Yumita et al. introduced a therapeutic strategy
combining low-intensity US with sonosensitizers for SDT
[55]. When low-intensity US irradiates MBs in bodily flu-
ids or soft tissues—either pre-existing or formed during
US exposure—these bubbles can expand under low com-
bined sound and static pressure, and contract when the
pressure is high. This results in a breathing-like vibration
or pulsation of the bubbles, typically classified as either
stable (non-destructive) or transient cavitation. At lower
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Fig.3 FUS-triggered local heating (42-45 °C) activates engineered ultrasound-responsive bacteria (URB) containing a thermosensitive IFN-y gene circuit.
This controlled IFN-y expression induces three key antitumor effects: (1) direct cancer cell apoptosis, (2) macrophage repolarization from M2 to M1 pheno-
type, and (3) activation of CD4+/CD8+T cells. The systemic IFN-y response further enhances immune activation in the spleen, generating immunological
memory that inhibits tumor metastasis. Reproduced with permission from Ref [54]. Copyright© 2023 Wiley-VCH GmbH
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intensities, cavitation remains steady and produces mini-
mal destructive force, whereas increased sound intensity
induces nonlinear bubble oscillation, collapse, and shock-
wave generation near the bubble surface [56]. This non-
linear stable cavitation can generate mechanical shear
and localized microstreaming in surrounding tissues,
disrupting cell membranes [57]. When the US intensity
exceeds a specific pressure threshold, the bubbles rapidly
expand past resonance size and implode violently [58],
producing extreme local temperatures (up to 10,000 K)
and pressures (81 MPa) [59, 60]. These extreme condi-
tions elicit potent biological effects, including the pro-
duction of reactive oxygen species (ROS), which induce
tumor cell apoptosis and necrosis [61, 62]. Furthermore,
ROS can trigger immunogenic cell death (ICD), activating
adaptive immune responses [63]. The addition of sono-
sensitizers further lowers the cavitation threshold and
promotes sonochemical reactions, enhancing ROS pro-
duction and amplifying treatment efficacy [64] (Fig. 4).
While SDT offers a non-invasive means to eliminate
localized solid tumors, its systemic anti-tumor effects
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remain limited, lacking strong anti-metastatic potential.
Therefore, the efficacy of SDT heavily depends on sono-
sensitizers, which are generally classified into organic
and inorganic types [65]. Organic sonosensitizers include
porphyrins, phthalocyanines, and their derivatives [66],
while inorganic types encompass metal oxides (e.g.,
Ag,0, TiO,) and piezoelectric materials like black phos-
phorus and barium titanate [67, 68]. Organic sonosen-
sitizers were pioneers in SDT applications [69-71]. For
example, Wang et al. extracted a chlorophyll derivative
(CHC) from spirulina, structurally identical to chlorin
e6 (Ce6), and modified it with three substituents to pro-
duce DYSP-C34, which showed tumor-targeting and US-
triggered ROS generation abilities [72]. After treatment
with DYSP-C34 combined with US, the tumor area in
liver tissue was reduced to just 2.2%, compared to 78.6%
in the control group, demonstrating effective tumor sup-
pression. Inorganic sonosensitizers also exhibit high SDT
potential due to their robust physicochemical properties
and multifunctionality. Ding et al. first demonstrated the
potent sonodynamic activity of nitrogen-doped graphene
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quantum dots (N-GQDs) [73], which generated 3-5
times more ROS under US than conventional sonosen-
sitizers. Thanks to the stability of pyrrole N and pyri-
dine N within their graphene lattice, N-GQDs retained
high sonodynamic efficiency even after tumor-targeting
functionalization with folic acid (FA-N-GQDs). These
functionalized N-GQDs produced abundant ROS upon
US stimulation, activating oxidative stress responses in
tumor cells via the PEX-p53 pathway, resulting in apop-
tosis rates as high as 95%. In murine subcutaneous tumor
models, FA-N-GQDs rapidly and selectively accumu-
lated in tumor tissues, and after two US treatments over
14 days, tumor volume was reduced by over 95%. Recent
advances in nanotechnology have introduced new strat-
egies for enhancing cancer therapy [62]. For example,
Zhang et al. synthesized a multifunctional cascade nano-
reactor to improve colon cancer SDT by simultaneously
boosting ROS production and inhibiting autophagy [74].
Their system incorporated chloroquine (an autophagy
inhibitor) and Ce6 into hollow polydopamine nanocores
pre-doped with platinum nanoparticles (CCP@HP), and
functionalized the surface with homologous tumor cell
membranes (CCP@HP@M), enabling precise tumor tar-
geting and significantly improved therapeutic outcomes,
offering a novel approach for the precision treatment of
deep-seated tumors.

US-Assisted drug delivery

Compared to normal tissue environments, the tumor
microenvironment exhibits distinct structural and com-
positional features [75], such as high cell density, leaky
tumor vasculature, elevated interstitial pressure, an
abnormal extracellular matrix, and the absence of func-
tional lymphatic drainage. These unique characteristics
present major obstacles to the effective delivery of che-
motherapeutic agents, necessitating the development
of innovative drug delivery strategies that can transport
therapeutic agents from the vascular system into the
tumor interior. US-assisted drug delivery systems (US-
DDS) have been explored across various diseases and are
particularly valued for their spatial and temporal con-
trollability. This precise control enables the integration
of diagnostic and therapeutic functions, underscoring
their considerable potential in oncology. As previously
discussed, MBs and NBs play a key role in enhancing
both the therapeutic efficacy and imaging contrast of
US-based treatments. These vesicular structures can also
serve as drug carriers, facilitating targeted delivery to
specific tissues and cells. US-DDS can be classified into
several drug delivery approaches that leverage either the
biological effects of US-induced MB/NB destruction or
the regulatory mechanisms triggered by US interaction
with these bubbles.
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Promoting drug uptake

The tumor microenvironment is often highly complex,
posing a significant barrier to the effective penetration
of conventional chemotherapeutic agents, thereby lim-
iting treatment efficacy. US can induce the cavitation of
MBs, generating mechanical effects such as shock waves,
microstreams, and shear stress. These physical forces
disrupt vascular walls and cell membranes, resulting in
pore formation and the loosening of tumor cell junctions,
which enhances membrane permeability and facilitates
the deeper penetration and accumulation of chemothera-
peutic drugs within the tumor tissue [76]. Gourevich et
al. utilized MRgFUS to evaluate doxorubicin uptake by
MCE-7 cells, both with and without the presence of US
and MBs [77]. Their findings showed a 3.2-fold increase
in cellular drug uptake under stable nonlinear cavitation.
MRgFUS not only offers a novel technique for quanti-
fying cavitation dosage but also significantly advances
the clinical translation of US combined with MBs as a
non-invasive and targeted strategy to enhance antican-
cer drug delivery [78]. Similarly, Bressand et al. dem-
onstrated that US-mediated microbubble cavitation
effectively enhanced the targeted delivery of paclitaxel
to pancreatic tumors, significantly reducing tumor vol-
ume in a subcutaneous pancreatic cancer mouse model,
while simultaneously lowering drug dosage and minimiz-
ing side effects [79, 80]. Michon et al. also reported that
US-targeted MBs increased blood flow in skeletal muscle
by amplifying nitric oxide (NO) signaling in endothelial
cells, an effect that was further potentiated with the addi-
tion of sodium nitroprusside—offering promising impli-
cations for improving radiotherapy in solid tumors [81].

Drug loading

Systemic circulation of drugs often results in low local
drug concentrations at target sites, limiting therapeutic
efficacy due to insufficient accumulation at lesion sites
[82]. This limitation can be addressed by encapsulating
drugs within MBs or by attaching them covalently or
non-covalently to MB surfaces. For example, Chen et al.
developed cisplatin-loaded MBs that showed enhanced
antitumor effects under US exposure and reduced cis-
platin accumulation in the kidneys and liver [83]. Liang
et al. designed amphiphilic Janus camptothecin-fluo-
rouracil (CF) lipid MBs with a drug loading efficiency
of 56.7 +2.3%, demonstrating a 14-fold increase in con-
trolled drug release under US compared to passive
release, resulting in a tumor inhibition rate of 72.4% for
CF-MBs + US versus 21.6% for CF liposomes [84]. How-
ever, the gap sizes in newly formed tumor vasculature
(380-780 nm) limit the extravasation of conventional
US contrast agents (1-5 pum). Polymer MBs can shrink
to approximately 400 nm under US, retaining acous-
tic responsiveness and enabling deeper penetration into
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tumor stroma for enhanced post-release drug reten-
tion and diffusion [86]. Since single-drug efficacy may
be inadequate, dual-drug loading strategies have been
explored. For instance, gemcitabine (hydrophilic) can be
surface-bound via biotin affinity, while paclitaxel (hydro-
phobic) is embedded in the MB core; combined US
application led to marked tumor reduction [85]. Beyond
chemotherapeutics, MBs can be functionalized with
antibodies, growth factors, DNA, or RNA through cova-
lent binding, biotin-avidin interaction, or electrostatic
adsorption ctors, DNA, and RNA via covalent bond-
ing, biotin affinity, or electrostatic absorption [86]. US-
targeted microbubble destruction (UTMD) significantly
enhances gene transfection. Rychak et al. showed that
siRNA-loaded MBs targeting the PTEN tumor suppres-
sor doubled knockdown efficiency under US compared
to free siRNA [87]. UTMD also boosts chemotherapy
by aiding miRNA transfection [88]or regulating protein
expression in tumor-related pathways [89]. CHUN et al.
conjugated PEG-SS-polyethylenimine (PSP) to MB sur-
faces via biotin-avidin bonds, creating PSP@MBs that,
under US exposure, improved gene delivery to solid
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tumors while reducing off-target toxicity (Fig. 5A) [90].
Elevated tumor interstitial pressure often hampers the
transport of large molecules like antibodies; UTMD gen-
erates “sono-pores” in the vascular endothelium, improv-
ing their penetration into tumor tissue [90]. For instance,
MBs conjugated with NF-«xB antibodies have been used
for US imaging of inflammatory bowel disease [91].
Thomas et al. developed EGFR-targeted lipid MBs com-
bined with US cavitation for radiolabeled chemotherapy,
encapsulating doxorubicin in liposomes functionalized
with Indium-111-labeled EGF; this strategy significantly
enhanced drug uptake in MDA-MB-468 xenografts, even
with poor tumor angiogenesis [92]. Surface modification
of drug-loaded MBs can also enable targeted delivery.
Yuan et al. engineered MBs conjugated with anti-ICAM-1
antibodies and Endostar to target plaque neovasculariza-
tion, achieving efficient drug delivery upon US stimula-
tion [93]. Overall, MBs can be conjugated with a variety
of small and large biomolecules to enhance intracellular
drug delivery under US stimulation.

Furthermore, gas molecules such as NO, hydrogen
sulfide (H,S), carbon monoxide (CO), and oxygen (O,)
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play crucial roles in cellular signal transduction and have
demonstrated significant therapeutic potential in radio-
therapy, chemotherapy, photodynamic therapy, SDT,
and immunotherapy [69]. Due to their small molecular
size, these gases can diffuse more efficiently across vas-
cular endothelial cells and the blood-brain barrier (BBB)
than conventional drugs. Moreover, gas molecules typi-
cally exhibit lower toxicity and higher permeability and
accumulation compared to traditional pharmacologi-
cal agents [94]. As a result, US-assisted delivery of gas
molecules has garnered increasing attention. A major
challenge in solid tumor treatment is the hypoxic tumor
microenvironment, which contributes to hypoxia-
induced radioresistance and reduces therapeutic effi-
cacy. In conventional radiochemotherapy, O, is often
employed as a radiosensitizer to enhance treatment out-
comes. Vaidya et al. developed MBs composed of D-a-
Tocopherol PEG 1000 succinate (TPGS) and sorbitan
monostearate, which improved MB stability and achieved
a high O,-loading efficiency of up to 10.49%, enabling
sustained O, delivery [95]. Additionally, the composition
of the MB shell and the O, content within the gas core
significantly influence the stability of lipid-based MBs.
Using phospholipids with longer hydrocarbon chains or
reducing the O, fraction by incorporating gas mixtures
can markedly extend MB half-life [96], thereby improv-
ing O, delivery to tumor vasculature under US activa-
tion. Peng et al. employed US-triggered O,-carrying MBs
to deliver O, directly to hypoxic tumor regions, signifi-
cantly enhancing the efficacy of localized radiotherapy in
nasopharyngeal carcinoma models [97]. In a breast can-
cer study, tumors treated with O,-loaded MBs followed
by radiotherapy showed a tumor volume increase of only
41%+1%, compared to a dramatic 337%+214% increase in
the group receiving radiotherapy alone (Fig. 5B, C) [98].
These findings underscore the potential of US-mediated
gas delivery to overcome hypoxia-induced resistance and
improve therapeutic outcomes in solid tumors.

Opening biological barriers

The BBB constitutes a critical physiological barrier that
restricts the entry of therapeutic agents into the central
nervous system (CNS), thereby posing a major chal-
lenge to the treatment of neurological disorders and
brain tumors [99]. FUS has emerged as a promising, non-
invasive technique to transiently and reversibly open the
BBB, allowing for the targeted delivery of a wide range of
therapeutic agents. These include small-molecule drugs
[100], cells [101], viral vectors for gene therapy [94], and
immunotherapeutic agents [102]. The feasibility and
safety of transcranial FUS for BBB disruption have been
validated in preclinical studies, including non-human
primate models, demonstrating its potential for clinical
translation.
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The US threshold required to open the BBB can be
reduced by up to 100-fold through the activation of MBs
[103]. When exposed to US, MBs undergo expansion and
contraction depending on the frequency of the US waves,
generating mechanical forces, microstreaming, and
acoustic radiation that facilitate their interaction with the
vascular endothelium. This mechanical activity enables
the transient disruption of the BBB, thereby permitting
drug molecules to cross into the brain parenchyma [104]
(Fig. 6). Lipsman et al. demonstrated the safe, reversible,
and repeatable non-invasive opening of the in patients
using low-frequency US in combination with MBs, with
full restoration of BBB integrity occurring within 24 h
[105]. Typically, MBs are administered intravenously
alongside therapeutic agents, and focused US locally
enhances endothelial permeability, improving drug
uptake by target brain regions. In 2022, Ye et al. [106]
introduced an innovative strategy combining US and
MBs with intranasal delivery. This approach leverages
the nasal route to bypass the BBB, minimizing systemic
exposure and associated risks, while focused US-induced
MB cavitation enhances the transport of intranasally
administered drugs to specific pathological sites within
the brain. Both intravenous and intranasal methods uti-
lizing US and MBs significantly improve drug delivery
efficiency to CNS regions that are otherwise inacces-
sible to conventional therapeutics, offering promising
avenues for treating neurological disorders. Furthermore,
the rapid development of smaller NBs with improved
stability and enhanced echogenicity has addressed the
limitations of MBs, such as their relatively large size and
limited drug loading capacity. NBs enable more efficient
extravasation into surrounding tissues and facilitate US-
triggered, targeted drug release [107].

Activating immunity

US-mediated immunomodulation represents an emerg-
ing field within US therapy, with increasing evidence
that the benefits of FUS extend beyond localized treat-
ment. FUS can exert direct effects on tissue and enhance
the delivery of immune stimulants, thereby triggering
immune responses with systemic implications for vari-
ous diseases. Boiling histotripsy (BH), a technique that
employs pulsed HIFU, generates high-amplitude shock
waves and induces localized heating and shock-driven
bubble activity at targeted lesions, resulting in tissue liq-
uefaction [108]. This process not only facilitates thermal
ablation of solid tumors but also promotes the release of
danger-associated molecular patterns, including tumor
antigens and other immunogenic factors, which in turn
stimulate adaptive immune responses and enhance host
antitumor immunity [109]. The therapeutic efficacy of
this immune activation can be further amplified through
the use of immunotherapy, such as immune checkpoint
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inhibitors [110, 111]. Immune checkpoints are regula-
tory molecules that inhibit cytotoxic T cell activity [114]
or suppress innate immune responses [115], and check-
point inhibitors function by blocking these pathways to
reactivate endogenous immune responses. While check-
point inhibitors have demonstrated promising outcomes
in certain patients, their overall response rates in clinical
trials remain limited, highlighting the need for combina-
tion strategies to improve therapeutic success [112]. US
can potentiate the effects of checkpoint inhibitors by
enhancing both innate and adaptive immune responses
[113]. For instance, Singh et al. combined BH with in situ
administration of anti-CD40 agonist antibodies (aCD40)

to improve the efficacy of immune checkpoint block-
ade in a refractory mouse melanoma model. This com-
bination stimulated strong intratumoral infiltration of
immune cell populations and induced systemic responses
at distant, untreated tumor sites, leading to the suppres-
sion of lung metastases and increased survival rates in
tumor-bearing mice [110].

Histotripsy is an innovative, non-invasive, and non-
thermal ablation technique that employs US-induced
cavitation to mechanically disrupt tissues and release
various immune-stimulating factors [114, 115]. Pre-
clinical studies have shown that histotripsy activates the
innate immune system in vivo, resulting in a significantly
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higher infiltration of CD8+T cells compared to con-
ventional treatments such as thermal ablation, radio-
therapy, or radiofrequency ablation [116]. Additionally,
US has been demonstrated to enhance the accumulation
of immune checkpoint inhibitors within tumors, par-
ticularly when used in conjunction with MBs that target
the vasculature and increase vascular permeability. This
strategy enables the efficient and localized delivery of
checkpoint inhibitors or immune adjuvants by loading
them onto MBs, thereby improving therapeutic efficacy
while reducing systemic toxicity [117, 118]. Bulner et al.
reported that the combination of US MBs and checkpoint
inhibitors produced superior antitumor effects compared
to monotherapy, leading to robust antitumor responses
and prolonged survival in murine models [119]. In the
CNS, the combined application of US and MBs facilitates
modulation of the BBB, triggering acute sterile inflamma-
tory responses that are essential for developing immune-
based therapies while maintaining treatment safety [120].

With ongoing technological advancements, US therapy
is gaining increasing traction in cancer treatment, with
HIFU showing promising results in managing conditions
such as prostate and pancreatic cancers. SDT also dem-
onstrates considerable potential in treating localized solid
tumors by improving drug permeability and stimulating
tumor-specific immune responses. Overall, US therapy
represents a novel and effective adjunctive approach to
conventional cancer treatments, particularly for localized
tumors, offering significant application prospects. None-
theless, several challenges persist, including limitations in
deep tissue penetration, the stability of sonosensitizers,
and the precise modulation of immune responses. Con-
sequently, future research is increasingly geared toward
refining multimodal synergistic therapies to overcome
these barriers and maximize therapeutic outcomes.

Prospects and challenges

US has emerged as a pivotal tool in the era of tumor pre-
cision medicine, offering promising diagnostic and ther-
apeutic capabilities. However, translating its immense
potential from laboratory and preclinical settings into
routine clinical application remains fraught with critical
challenges. Chief among these is the need for thorough
validation of novel US contrast agents and sonosensitiz-
ers—especially those involving nanomaterials. Com-
prehensive, long-term clinical studies are essential to
evaluate their biocompatibility, metabolic clearance, and
potential for organ-specific or systemic toxicity. Fur-
thermore, whether involving molecular probes, sono-
sensitizers, or multifunctional theranostic systems,
detailed pharmacokinetic and pharmacodynamic pro-
files must be established alongside robust assessments
of long-term safety and therapeutic efficacy. In addi-
tion, the clinical value of these emerging technologies
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must be demonstrated clearly in comparison to existing
diagnostic and treatment modalities. To ensure their
integration into healthcare systems, standardized quanti-
tative indicators must be developed to evaluate feasibility,
cost-effectiveness, and sustainability. Addressing these
translational challenges requires a concerted effort from
academia, industry, and regulatory bodies to formulate
unified technical standards and advance regulatory sci-
ence. Such collaboration is vital for accelerating the safe,
effective, and practical clinical translation of US-based
diagnostic and therapeutic innovations.

In summary, US offers distinct advantages over radia-
tion and magnetic fields, including non-invasiveness,
cost-effectiveness, operational simplicity, and precise
control, making it less restricted in clinical applications.
Currently, US-based diagnostic and therapeutic systems
are being applied across diverse disease models, includ-
ing CNS disorders, cardiovascular diseases, musculo-
skeletal conditions, and various cancers. US molecular
imaging using contrast agents has expanded the scope
of traditional US by enabling disease diagnosis and char-
acterization at the molecular level, as demonstrated in
numerous animal and preclinical studies. Targeted US
contrast agents can detect metabolic changes and have
proven effective in early tumor detection, treatment
monitoring, and image-guided therapy, thereby enhanc-
ing visualization and the quality of care. However, fac-
tors such as operator technique, equipment limitations,
and patient variability continue to affect the sensitivity
and specificity of CEUS, necessitating extensive clini-
cal evaluation and collaboration between academia and
industry to facilitate clinical translation. Advances in
molecular chemistry, US physics, and imaging technolo-
gies are expected to further enhance the sensitivity and
specificity of tumor US molecular imaging. Meanwhile,
sonosensitizers have evolved through progress in mate-
rials science and nanotechnology, but clinical translation
remains hindered by issues such as suboptimal phar-
macokinetics, instability, insufficient targeting speci-
ficity, and potential toxicity. Although therapeutic US
effects—such as thermal ablation, cavitation, and ROS
generation—are increasingly understood, the complex,
overlapping biological mechanisms remain inadequately
explored, limiting broader application. To fully realize
the clinical potential of US, there is an urgent need to
investigate its underlying mechanisms, refine sonosen-
sitizer design, and optimize US parameters to establish
a robust theoretical and practical foundation. Addition-
ally, integrating US with emerging technologies—such
as wearable systems, omics-based analysis, and artificial
intelligence—could drive forward personalized and pre-
cise medical interventions. Future developments may
enable capabilities like biomechanical sensing, remote
US control, intelligent diagnostics, and programmable
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nanorobots, positioning US as a cornerstone in tumor
precision medicine by seamlessly combining diagnostic
imaging with therapeutic functionality.
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