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Abstract

Lung ultrasound (LUS) interpretation is often subjective and operator-dependent, motivating the development of
automated, artificial intelligence (Al)-based methods. This international, multi-center study evaluated two distinct
deep learning approaches for automated LUS severity scoring for pulmonary infections caused by COVID-19: a
pre-trained classification model (CM) and a segmentation model based method (SM); assessing performance at
video, exam, and prognostic levels. Two datasets were analyzed: one comprising data from multiple scanners and
another using data from a single scanner. Results showed that the SM achieved prognostic-level agreement with
expert clinicians comparable to that of the CM. Furthermore, at the exam level, over 84% of examinations were
classified with acceptable error (< 10 score difference) across both models and datasets, reaching both methods
an agreement higher than 95% on the dataset acquired by a single scanner. The obtained results demonstrate the
potential of Al-assisted LUS for reliable prognostic assessment and highlight that image quality and acquisition
technique are key factors in achieving consistent and generalizable model performance, as well as the potential for
international clinical translations.
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Introduction

Lung ultrasound (LUS) has rapidly evolved into an essen-
tial tool for assessing pulmonary conditions in a vari-
ety of clinical scenarios, particularly in critical care and
emergency medicine. Its portability, safety, lack of ion-
izing radiation, and cost-effectiveness make it an attrac-
tive alternative to other imaging techniques, especially
in resource-limited scenarios or for bedside assessments
[1]. Its utility has been particularly recognized in the con-
text of infectious diseases, such as pneumonia caused by
COVID-19 infection [2, 3], where it played a crucial role
in assessing lung involvement and monitoring patients by
identifying characteristic sonographic features, including
lung consolidations, pleural effusions, vertical artifacts
and pleural irregularities [4—6].

However, despite its advantages, the accurate inter-
pretation of LUS images requires significant expertise
and experience. Identifying and classifying sonographic
patterns can be challenging, even for trained clinicians,
and is susceptible to inter-observer variability [7-9]. This
subjectivity can impact diagnostic accuracy and patient
management, highlighting the need for tools that can
assist clinicians in LUS interpretation [10].

Artificial intelligence (AI) has emerged as a promising
solution to further reduce the inter-observer variability
and enhance the diagnostic capabilities of LUS, as well
as in other medical fields [11, 12]. Al algorithms, par-
ticularly deep learning models, excel at recognizing com-
plex patterns and features in signals and medical images,
enabling enhanced analysis and interpretation. For exam-
ple, in the field of radiology, deep learning models have
been successfully applied to detect and classify various
abnormalities in chest X-rays, such as pneumonia, pneu-
mothorax, and lung nodules [13, 14]. In cardiology, Al
algorithms have been proposed to analyse electrocardio-
grams (ECGs) for the early detection of heart arrhyth-
mias and other cardiovascular diseases [15].

In the context of LUS, AI models can be broadly cat-
egorized into two types: segmentation models, which
focus on delineating characteristic ultrasound artifacts
(e.g., vertical artifacts, pleural line irregularities, or areas
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of consolidation), and classification models, which aim to
categorize LUS images into predefined classes (e.g., nor-
mal vs. abnormal tissue or severity scores).

Several studies have shown promising results in apply-
ing Al to LUS interpretation. For instance, in [16] a deep
learning model was developed for the real-time multi-
class segmentation of artifacts, achieving high accuracy
and speed. In [17], Deep Learning (DL) was applied
to lung ultrasound videos for scoring pneumonia in
COVID-19 patients, demonstrating the potential of Al
for the assessment of lung abnormalities. Furthermore, in
[18, 19] DL models were presented for the detection and
localization of vertical artifacts and COVID-19 markers
in LUS images, respectively, demonstrating the potential
of Al for various clinical applications.

One of the scoring systems for LUS severity classifica-
tion is presented in [5] ranging from 0 to 3, where:

+ Oindicates an aerated lung appearance. The pleura
line is continuous and horizontal artifacts (A-lines)
are present,

+ 1 represents mild abnormalities, vertical artifacts
without broken pleural line are visible,

+ 2 corresponds to moderate abnormalities. The
pleural line is broken with vertical artifacts
affecting <50% of the pleura. Small to large
consolidated areas could appear.

+ 3indicates severe abnormalities, where wide vertical
artifacts appear affecting>50% of the pleural line
with or without extensive consolidations.

In Fig. 1, an example of the LUS score image classifica-
tion is shown. These individual scores are then combined
to generate an overall lung score, which provides an
objective and standardized assessment of lung involve-
ment, aiding in diagnosis, prognosis, and treatment deci-
sions [20, 21]. However, the accurate assignment of these
scores to LUS videos can be challenging, as it often relies
on subjective visual assessment and the determination
of a threshold for the presence and extent of lung abnor-
malities. Furthermore, clinicians need to decide how
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many frames with a particular abnormality are required
to assign a specific score to the entire video. Currently,
this threshold is often determined subjectively, leading to
potential inconsistencies in scoring.

While the literature demonstrates the potential of DL
in LUS, a question remains regarding the generalizabil-
ity and performance of different Al paradigms. To date,
no large-scale study has performed a direct evaluation
of DL-based methods across international, multi-center,
and multi-scanner LUS datasets. This gap in the literature
makes it difficult for the clinical and scientific community
to assess the robustness of these distinct approaches in
real-world settings, where data heterogeneity caused by
patient population differences, acquisition protocols, and
scanner variations represents a major challenge.

Building on our previous work in deep learning-based
algorithms for real-time LUS assisted diagnosis [22] and
Al-based scoring systems for assessing lung abnormal-
ity severity [23], this study aims to address this gap by
evaluating the performance of different computational
approaches in LUS scoring on an international multi-
center, multi-scanner dataset. The goal is to demonstrate
how these approaches can assist clinicians in LUS prog-
nosis. The analysis is conducted at three levels: video
(assessing individual LUS clips), examination (aggregat-
ing findings from all videos of a single patient to deter-
mine an overall severity score) and prognostic (predicting
patient outcomes based on the LUS findings). Addition-
ally, this research investigates the impact of scanner vari-
ability on models performance, by comparing the results
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obtained on videos acquired with different ultrasound
scanners.

Materials and methods

This international multi-center and multi-scanner study
was conducted as a collaborative effort between the
Ultrasonic Systems and Technologies Group (GSTU) at
the Spanish National Research Council (CSIC) in Madrid,
Spain, and the ULTRa Lab group at the University of
Trento in Trento, Italy. The study involved the evaluation
of two AI methods on a diverse dataset of LUS images
and videos acquired from multiple centers. The details of
the study design, data acquisition, Al models, and evalua-
tion methods are described in the following subsections.

Dataset

The data used to perform this study contains a total
of 2219 videos consisting of 365,506 frames acquired
from different hospitals in Italy and Spain of COVID-
19 patients and annotated, from score 0 to score 3 on
the video level, by a panel of expert clinicians, each with
more than ten years of dedicated experience in thoracic
ultrasound. For clarity, we will differentiate between two
distinct datasets explained in detail bellow. In Fig. 2a
schematic overview of the dataset is shown. Both data-
sets were acquired in accordance with the guidelines
of the Declaration of Helsinki and approved by the
Ethical Committee of the Fondazione Policlinico Uni-
versitario San Matteo (protocol 20200063198), of the
Fondazione Policlinico Universitario Agostino Gemelli,
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Fig. 2 Overview of the dataset of the study
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Istituto di Ricovero e Cura a Carattere Scientifico (pro-
tocol 0015884/20 ID 3117) and approved by the Institu-
tional Review Board of Hospital Universitario Puerta de
Hierro (approval code PI47-21, protocol version 3.0 and
date of approval 5 April 2021).

Dataset-1

This dataset was acquired between 2020 and 2021 in the
study described in [24] and used by the ULTRa Lab team
for previous research evaluating the performance of Deep
Learning models in LUS prognostic. For the development
of this work we will use 1530 videos acquired from 83
patients following the 14 regions’ acquisition protocol
obtaining a total of 113 examinations. This multicenter
dataset is composed of images from three different ultra-
sound scanners: Esaote Mylab50, Philips [U22 and ATL
Cerbero; applying different imaging configurations: fre-
quency from 2.5 MHz to 10 MHz and depths from 5 to
30 cm, depending on the patient and the scanner used,
as explained in [24], using both convex and linear probes,
reflecting a real-world multi-center and multi-scanner
nature. For complete details on patient recruitment,
including inclusion and exclusion criteria, readers are
referred to the original publication [24].

Dataset-2

This dataset comprises data collected in 2021 from
patients hospitalized with COVID-19. It was obtained
in the clinical study described in [25] and used in previ-
ous work by the CSIC team to develop and evaluate Al
algorithms for computer-aided diagnosis in LUS. The
full recruitment protocol is available in the original pub-
lication [25]. It is composed of 689 LUS videos from 30
patients applying the 12 lung regions’ protocol. The
UltraCOV equipment was used with a 3.5 MHz convex
probe and following a standardized scanning criteria [26]
where imaging configuration (focus, range, sector scan,
...) and probe position was fixed trying to minimize the
impact of its variability in the initial study. Each patient
was examined with two standardized probe orientations:
longitudinal, where the probe is aligned parallel to the
ribs with its marker pointing towards the patient’s head,
and transversal, where the probe is rotated 90 degrees
perpendicular to the ribs. This resulted in a total of 59
examinations.

Al methods

As previously mentioned, this study evaluates two dis-
tinct Deep Learning-based methods for computer-aided
diagnosis in lung ultrasound: a classification model and
a method based on segmentation models of lung ultra-
sound images.
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Classification model method (CM)

The classification model utilizes a ResNet18 [27] archi-
tecture to classify lung ultrasound images according to
the 4-level severity score. ResNetl8 is a convolutional
neural network (CNN) known for its effectiveness in
image classification tasks and its ability to handle com-
plex patterns. This model was previously developed and
tested in the study described in [23], where it demon-
strated good performance in classifying LUS images. The
model was trained on a dataset of 58,924 LUS images
acquired with a variety of scanners, including Min-
drayDC-70 Exp®, EsaoteMyLabAlpha°®, ToshibaAplio XV*,
and CerberoATL, as detailed in [23], including images
from patients with varying degrees of lung severity [5].
As described in their methodology [23], a pre-processing
step involving image cropping was applied to remove
noise to the input of the network. This process, however,
does not normalize the geometric aspect ratio of the
underlying sonographic image.

Segmentation model method (SM)

The segmentation model employs an Attention U-Net
architecture to segment artifacts in LUS images. Prior to
being fed into the network, each raw sectorial ultrasound
frame is converted into a rectangular B-scan image
through a scan conversion process (see Fig. 3). This pre-
processing step standardizes the input geometry, mak-
ing the model independent of variations in probe sector
width and shape across different scanners. The model
used in this study was trained on a dataset of 9159 LUS
images, acquired exclusively with the UltraCOV equip-
ment, and its output is further processed by a post-pro-
cessing algorithm described in [22], which refines the
segmentation results and reduces false positives. Stan-
dard regularization techniques, including dropout, were
employed during training to mitigate the risk of overfit-
ting. This approach has shown promising results in pre-
vious studies demonstrating its ability to segment key
artifacts in LUS images. Once the segmentation is per-
formed, the presence and magnitude of different abnor-
malities, such as vertical artifacts and consolidations, are
quantified, the severity score is assigned to each image
according to the 4-level scoring system described in the
introduction. It is important to note that the training set
for this model included images from 27 of the 30 patients
who also constitute Dataset-2.

A key advantage of this segmentation approach is its
ability to provide detailed information about the loca-
tion and extent of different abnormalities in LUS images.
This allows for a more comprehensive assessment of lung
severity compared to classification models. However, the
development of accurate segmentation models for LUS
faces challenges, particularly the need for large amounts
of labelled data. Frame-by-frame manual annotation of
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Fig. 3 lllustration of the scan conversion pre-processing step applied in the SM method. The raw sectorial LUS image (left) is transformed into a standard-
ized rectangular B-scan image (right) before being input into the segmentation network

LUS videos is time-consuming and requires expertise. To
overcome this limitation, in [22] a semi-automatic label-
ling algorithm was employed reducing significantly the
manual annotation effort.

Analysis

This study employed a multi-level analysis approach,
covering video, examination, and prognostic levels. By
evaluating the performance of the methods at these dif-
ferent levels, it provides a more complete understanding
of the potential benefits and limitations of Al-assisted
LUS interpretation. Additionally, the performance of
each method will be analyzed for each scanner at video-
level, allowing for a detailed assessment of the impact of
scanner variability on the results, as well as a coherence
analysis between both CM and SM method.

Video-level analysis
At the video level, the performance of both methods was
evaluated by comparing the Al-generated predictions
with the ground truth annotations provided by expert cli-
nicians. The AI models predict a severity score for each
frame in a LUS video. To obtain an overall score for the
video, a thresholding technique [17] was employed, by
identifying the highest severity score present in a per-
centage of the video frames. To account for potential
inter-observer variability in the ground truth annota-
tions, the analysis was also performed with a tolerance
of 1 and 2 errors per video. This means that a video was
considered correctly classified if the Al prediction was
within 1 or 2 score levels of the ground truth annotation,
respectively.

The performance of each method at the video level was
evaluated using several metrics, including:

Table 1 Table of interpretation agreement for quadratic
weighted cohen'’s kappa

Value Agreement
Kuwe <0 Poor
0<Ky <02 Slight

0.2 <Ky < 04 Fair

04 <Ky, <06 Moderate
06<Ky, < 08 Substantial

08<K,, <1 Almost perfect

+ Accuracy: The proportion of correctly classified
videos.

+ Fl-score: The harmonic mean of precision and recall.

+ Quadratic Weighted Cohen’s Kappa (K,,.): A

measure of agreement between two raters, taking

into account chance agreement [28]. In Table 1 the

interpretation of K, is shown [29].

+ Spearman’s rank correlation coefficient (p): A non-
parametric measure used to assess the degree of
correlation without assuming a linear relationship

between the predicted and ground truth scores.

In addition to these metrics, confusion matrices were
generated to provide a more detailed visualization of the
performance of each method, showing the distribution
across the different scoring classes.

Examination-level analysis

The examination-level analysis evaluates the performance
of the Al models in predicting patient-level outcomes
based on the aggregation of video-level scores. For each
examination, the Al-generated scores for individual LUS
videos were summed to obtain an overall examination
score, considering the number of lung regions explored,
12 or 14 regions, obtaining values from O to 36 or 42
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respectively. The Al-predicted scores were then com-
pared to the ground truth assigned by expert clinicians.

We adopted the error tolerance defined in a founda-
tional multi-center study by Mento et al. [17], where scor-
ing errors of <10 at the examination level were deemed
clinically acceptable.

Prognostic-level analysis

The prognostic-level analysis aims to evaluate the ability
of the Al models to predict patient outcomes based on
their LUS scores. Two different prognostic classification
schemes were used, depending on the LUS acquisition
protocol to maintain consistency with previous studies:

« Binary classification for 14-region protocol: For
Dataset-1, which followed a 14-region acquisition
protocol, a binary classification scheme was used
to categorize patients into two risk groups: low risk
(score <24) and high risk (score >24). This approach
is based on the study [30], which demonstrated
the ability of a 14-region LUS protocol to predict
worsening in patients with COVID-19 pneumonia.
Dataset-1 contains 64 exams classified by clinicians
as low risk and 49 exams as high risk.

o Multi-class classification for 12-region protocol: For
Dataset-2, which followed a 12-region acquisition
protocol, a multi-class classification scheme was
used to categorize patients into four severity levels:
healthy (score =0), mild (score 1-7), moderate (score
8-18), and severe (score > 19). This classification is
based on the study [31], which investigated the use
of bedside ultrasound for the noninvasive assessment
of lung lesions in patients with COVID-19. Dataset-2
contains 3 exams classified as healthy, 12 as mild, 29
as moderate and 15 as severe.

Due to these different classification schemes (binary vs.
four-level), Weighted Cohen’s Kappa (K,,,) values are not
directly comparable between Dataset-1 and Dataset-2
at the prognostic level. Therefore, while K, is used to
assess agreement within each dataset, results are pre-

sented and discussed separately.

Al methods agreement: CM vs. SM

To assess the agreement of the two AI methods (CM and
SM), their predictions were compared at each level of
analysis: video, examination, and prognostic. The agree-
ment between the models was assessed using Weighted
Cohen’s Kappa coeflicient (K,), and the correlation
between two models was evaluated using Spearman’s
rank correlation coefficient (p), as well as obtaining the
accuracy and F1-Score to provide additional context. This
analysis allows us to evaluate the consistency of the two
AI methods in interpreting LUS images and predicting
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patient outcomes, and to identify potential areas where
the models complement each other.

Results

Threshold selection

Figures 4 and 5 show the performance of the CM and SM
methods at the video, examination, and prognostic levels
for different threshold values in Dataset-1 and Dataset-2,
respectively. The x-axis represents the threshold and the
y-axis represents the accuracy, defined as the propor-
tion of correctly classified videos or examinations. In
both cases, a range of thresholds from 1 to 100% of the
frames was tested. Table 2 summarize the results on both
datasets.

Dataset-1

In Fig. 4, we can observe the trend, in term of accuracy,
of both methods. The CM method (Fig. 4a) achieves
its highest agreement using a threshold of 2% obtain-
ing an accuracy of 53.40%. On the other hand, the SM
method (Fig. 4b) obtains its best result with a threshold
of 4% achieving an accuracy of 47.58%. These results at
video level are shown by the solid green lines in Fig. 4a
and b. The dashed and dotted green lines in Fig. 4a and
b represent the performance with a tolerance of +1 and
+2 error respectively, where both methods show similar
performance.

Figure 4c and d show the performance at the examina-
tion and prognostic levels. The red lines represent the
prognostic-level accuracy, while the blue lines represent
the examination-level accuracy. The CM method (Fig. 4c)
achieves its best result at both levels with a 1% thresh-
old obtaining an accuracy of 84.07%. On the other hand,
the SM method (Fig. 4d) shows a higher performance at
the examination level with a 2% threshold achieving an
accuracy of 88.50%. However, at the prognostic level, the
SM method achieves its best result with a threshold of 1%
obtaining an accuracy of 76.11%.

Dataset-2

Figure 5 shows the performance of both solutions on
Dataset-2. At the video level, the CM solution (Fig. 5a)
achieves its best result with a threshold of 2% obtaining
an accuracy of 55.73% without error tolerance. The SM
solution (Fig. 5b) achieves its best result with a threshold
of 3% obtaining an accuracy of 71.51%. At the exam level,
the CM solution (Fig. 5¢) maintains a good performance
with a 1% threshold, obtaining an accuracy of 96.61%,
while the SM solution (Fig. 5d) achieves its best result
with a threshold of 1% with an accuracy of 100%. At the
prognostic level, the SM solution performs better, obtain-
ing an accuracy of 83.05% with a threshold of 1%. On the
other hand, the CM solution achieves a performance of
76.27% with a threshold of 1%. Both solutions show high
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SM solution
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Fig.4 Threshold evaluation at video, examination and prognostic level for Dataset-1.a) and b) show video level performance for CM and SM respectively,
while ¢) and d) show exam (blue) and prognostic (red) results. For each curve, the optimal threshold and its corresponding accuracy are indicated in the

legend and visually marked with a point on the graph

accuracies applying error tolerance of +1 and +2: 88.10%
and 97.10% respectively for CM, and 92.35% and 97.90%
for SM.

Furthermore, Fig. 5a and b also show the performance
of both solutions for longitudinal (blue) and transversal
(red) acquisitions separately. The results indicate that
both solutions achieve similar performance for both
types of acquisitions, with a slight advantage for longitu-
dinal acquisitions.

Based on these results, a 1% threshold was selected for
all subsequent video-level, examination-level, and prog-
nostic-level analyses presented in this study.

Video-level performance

This section examines the performance of both the Clas-
sification Model (CM) and Segmentation Model (SM)
methods at the video level on Dataset-1 and Dataset-2,
using the optimal 1% threshold determined in Sect. 3.1.

A comparative analysis of performance across different
ultrasound scanners is presented in Sect. 3.2.3. Table 3
summarizes the performance metrics for CM and SM
methods on both datasets.

A detailed per-class analysis was also conducted to bet-
ter understand the models’ performance on each specific
LUS score. The complete precision and recall metrics
for each class are presented in Appendix Table 7. These
results quantitatively show that for both models, the pri-
mary source of misclassification occurred in the interme-
diate scores, particularly in distinguishing Score 1 from
Scores 0 and 2. A full interpretation of these findings in
the context of clinical challenges is provided in the Dis-
cussion section.

CM method
The CM method showed K, values of 0.63 (Dataset-1)

and 0.66 (Dataset-2), indicating substantial agreement
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Fig.5 Threshold evaluation at video, examination and prognostic level for Dataset-2. a and b show video level performance for CM and SM respectively,
while ¢ and d show exam (blue) and prognostic (red) results. For each curve, the optimal threshold and its corresponding accuracy are indicated in the

legend and visually marked with a point on the graph

Table 2 Summary of agreement with best threshold

Level Dataset-1 Dataset-2

™ M ™ M

Acc (%) Thr (%) Acc (%) Thr (%) Acc (%) Thr (%) Acc (%) Thr (%)
Video 5340 2 47.58 4 5573 2 71.51 3
Exam 84.07 1 88.50 2 96.61 1 100 1
Prognostic 84.07 1 76.11 1 76.27 1 83.05 1

Table 3 Performance metrics for CM and SM method at video-

level
Metric Dataset-1 Dataset-2

cM SM cM SM
Accuracy 0.53 0.46 0.55 0.71
+1 tolerance acc 0.86 0.87 0.88 092
+2 tolerance acc 0.98 0.97 0.97 0.98
F-1 Score 047 044 048 0.60
Kqwe 0.63 0.58 0.66 0.79
o 0.65 0.59 0.64 0.80

with the clinicians’ annotations. While overall accuracies
were 0.53 and 0.55 for Dataset-1 and Dataset-2 respec-
tively, the K, values provide a more relevant measure of
agreement beyond chance. F1-scores were 0.47 for Data-
set-1 and 0.48 for Dataset-2, and Spearman’s correlation

(p) values were 0.65 for Dataset-1 and 0.64 for Dataset-2.

Accuracies with *1 tolerance increased to 0.86 for Data-
set-1 and 0.88 for Dataset-2. With a+2 tolerance, accu-
racy further increased to 0.98 and 0.97, respectively.

The overall confusion matrices for the CM method
(Fig. 6) show the distribution of predicted versus true
scores including the performance across different scan-
ners, which is discussed further below. For Dataset-1, the
most frequent misclassification was for videos with a true
score of 1, often misclassified as 0 or 2. For Dataset-2,
the confusion matrix diagonal is more consistent, corre-

sponding to the higher K, value.
SM method
The SM method achieved K . values of 0.58 (Dataset-1,

qwe
moderate agreement) and 0.79 (Dataset-2, substantial

agreement). Accuracies were 0.46 and 0.71 on Data-
set-1 and Dataset-2, respectively. With +1 tolerance,
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accuracies were 0.87 and 0.92. With +2 tolerance, accu-
racies were 0.97 and 0.98 respectively. F1-scores were
0.44 (Dataset-1) and 0.60 (Dataset-2), and Spearman’s p
values were 0.59 (Dataset-1) and 0.80 (Dataset-2).

The overall confusion matrices for the SM method
(Fig. 7) show that the model performed well classifying
scores 0 and 3 in both datasets, with more misclassifi-
cations for intermediate scores in Dataset-1. The higher
K, value and stronger diagonal in the Dataset-2 confu-
sion matrix reflect the improved performance with the
standardized dataset. Figure 7 also includes results of
performance for this method across different scanners,
which are discussed below.

Exam-level performance

This section presents the exam-level performance of the
CM and SM methods, comparing Al-predicted exami-
nation scores to the ground truth scores. Figure 8 shows
the distribution of scoring errors ranges between method
prediction and clinician evaluation.

CM method

For the CM method, the error distribution differed
between the two datasets (Fig. 8). 84.1% of examinations
on Dataset-1 had an acceptable error (<10). On Data-
set-2, the CM method showed a different pattern obtain-
ing 96.6% of examinations with an acceptable error.

SM method

The SM method also exhibited different error distri-
butions across the two datasets (Fig. 8). On Dataset-1,
12.4% of exams had errors greater than 10. This resulted
in 87.6% of examinations with an acceptable error on
Dataset-1. On Dataset-2, the SM method showed the
best performance at the examination level with no errors
greater than 10, resulting in 100% of examinations with
an acceptable error.

Prognostic-level

This section assesses the performance of the CM and
SM methods at the prognostic level. As described in the
Methods section, this analysis uses different classification
schemes for Dataset-1 (binary classification: low risk vs.
high risk) and Dataset-2 (four-level classification: healthy,
mild, moderate, severe). Performance is evaluated using
F1 score, accuracy, p and K, and confusion matrices
which are represented in the Table 4; Fig. 9.

CM method

For Dataset-1, the CM method achieved an accuracy of
0.84, an Fl-score of 0.83, and a K, of 0.66, indicating
substantial agreement (according to Table I). The confu-
sion matrix (Fig. 9, top left) reveals that while the model
correctly classified a high percentage of ‘low risk’ cases
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(96.88%), it was less accurate in classifying ‘high risk’
cases (67.35% correct). On Dataset-2 the CM method
achieved an accuracy of 0.76, an Fl-score of 0.69, and a
K, of 0.80, also representing substantial agreement.
The confusion matrix (Fig. 9, bottom left) shows moder-
ate performance for the ‘healthy’ category (33.33%) and
excellent performance for the ‘mild’ category (91.67%).
However, there is more confusion between the ‘healthy’
and ‘mild’ categories, and between the ‘moderate’ and
‘severe’ categories.

SM method

For Dataset-1, the SM method achieved an accuracy of
0.76, an Fl-score of 0.76, and a K, of 0.51, indicating
moderate agreement. The confusion matrix (Fig. 9, top
right) shows that 79.69% of ‘low risk’ and 71.43% of ‘high
risk’ cases were correctly classified. On Dataset-2, the SM
method achieved an accuracy of 0.83, an F1-score of 0.86,
and a K, of 0.87, representing substantial agreement.
The confusion matrix (Fig. 9, bottom right) reveals good
performance for the ‘healthy’ (100%), ‘mild’ (66.67%),

‘moderate’ (86.21%) and ‘severe’ (86.67%) categories.

Agreement between Al methods: CM vs. SM

This section evaluates the agreement between the pre-
dictions of both methods at the video, examination,
and prognostic levels (see Table 5 for all metrics). At
the video level, agreement was substantial on Dataset-1
(quc = 0.61) and moderate on Dataset-2 (quc = 0.52).
While video-level accuracies were similar (around 0.49—
0.50), the K, values suggest a higher level of agreement
beyond chance on Dataset-1. Considering tolerance for
minor disagreements, the video-level accuracy with a+1
tolerance was 0.86 on Dataset-1 and 0.81 on Dataset-2,
and with a+2 tolerance, it increased to 0.95 and 0.92,
respectively. At the examination level, the percentage of
examinations with an acceptable error (<10) was 83.2%
for Dataset-1 and 86.4% for Dataset-2. At the prognostic
level, agreement was substantial for both Dataset-1 (K,

= 0.64, binary classification) and Dataset-2 (K, = 0.60,
four-level classification).

Performance of each method on different scanners

Given the comparable results obtained in both datasets
for both solutions, the question arises as to how they will
behave on different devices and whether there may be
factors affecting the implementation of Al-based meth-
ods on different devices.

For this reason, this subsection compares the perfor-
mance of the CM and SM methods across the different
ultrasound scanners, primarily focusing on the Weighted
Cohen’s Kappa (K, as a measure of agreement with
clinician annotations. Table 6 presents the performance
metrics, and Figs. 6 (CM) and 7 (SM) show the confusion
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Fig. 8 Error distribution at the examination level for CM and SM methods

Table 4 Performance metrics for CM and SM method at
prognostic level

Metric Dataset-1 Dataset-2

cM SM c™m SM
Accuracy 0.84 0.76 0.76 0.83
F-1 Score 0.83 0.76 0.69 0.86
Kque 0.66 0.51 0.80 0.87
o 0.69 0.51 0.82 0.84

matrices of method performance acquired by each
scanner.

For Dataset-1, which employed EsaoteMyLab, Cer-
beroATL, and PhilipsIU22 scanners, significant variabil-
ity in agreement (K_,,) was observed for both the CM
and SM methods.

Analyzing the CM method (Fig. 6; Table 6), the high-
est K, value was achieved on the EsaoteMyLab scan-
ner (0.62), indicating substantial agreement according
to Table I. The PhilipslU22 scanner showed a lower K,
of 0.34 (fair agreement), despite having the highest accu-
racy (0.72). The CerberoATL scanner exhibited the low-
est K, (0.31, fair agreement) and the lowest accuracy
(0.42) for the CM method. The confusion matrix for

CerberoATL reveals a tendency for the model to overes-
timate the severity score.

Examining the SM method (Fig. 7; Table 6), a simi-
lar pattern emerges in Dataset-1. The highest K, was
observed on the EsaoteMyLab scanner (0.59, moderate
agreement). The PhilipsTU22 scanner had a K, of 0.55
(moderate agreement), and the CerberoATL scanner
had the lowest K. (0.16, slight agreement). As with the
CM method, the SM method’s confusion matrix for Cer-
beroATL demonstrates a high degree of misclassification
across all scores, except for score 3.

In contrast to Dataset-1, Dataset-2 utilized the Ultra-
COV scanner with standardized acquisition settings,
which demonstrates consistently higher agreement for
both models. The CM method achieved a K, of 0.66
(substantial agreement), and the SM method achieved
a K, of 0.79 (substantial agreement). The confusion
matrices for Dataset-2 (Figs. 6 and 7) show a clearer diag-
onal for both models, indicating better overall agreement
with the clinician annotations.



Munoz et al. The Ultrasound Journal (2025) 17:45

CM solution

Page 13 of 18

SM solution

Prognostic level

0.8

Low risk

0.6

Dataset-1
True Label

- 0.4

-0.2

High risk

y -0.0
High risk
Predicted Label

Low risk

Prognostic level

10

0.8

Low risk

0.6

True Label

-0.4

-0.2

High risk

Low risk High risk

Predicted Label

Prognostic level

10

- 33.33%

Healthy

0.8

- 0.00%

Mild

0.6

Dataset-2
True Label

- 0.00% 04

Moderate

-0.2
0.00%

0.00% 43.75%

Severe

-0.0

Severe

Healthy Mild Moderate

Prognostic level

10
100.00% 0.00% 0.00% 0.00%
0.8

66.67%

Healthy

0.00% 33.33% 0.00%

Mild

0.6

True Label

Moderate

0.00% -04

-02

0.00% 0.00% 13.33%

Severe

-0.0

Healthy Mild Moderate

Severe
Predicted Label Predicted Label

Fig. 9 Confusion matrices at the prognostic level
Table 5 Agreement metrics between methods: CM vs. SM

Dataset-1 Dataset-2
Level Acc F-1 Kawe P Acc F-1 Kawe P
Video 0.49 0.44 0.61 0.64 0.50 0.40 0.52 0.51
Exam 0.83 - - - 0.86 - - -
Prognostic 0.83 0.82 0.64 0.66 0.56 053 0.60 0.66
Table 6 Table of comparison results metrics by scanner at video-level

Dataset-1 Dataset-2
Metric EsaoteMylab CerberoATL PhilipslU22 UltraCOV

™M SM ™M SM ™M SM (@)1 SM
Accuracy 0.52 046 042 0.35 0.72 0.52 0.55 0.71
F-1 Score 046 0.44 0.34 0.27 0.39 043 048 0.60
quc 0.62 0.59 0.31 0.16 0.34 0.55 0.66 0.79
o} 0.65 0.59 0.40 0.32 041 0.59 0.64 0.80
Discussions model performance, generalizability, and the impact of

The main goal of this study was to explore the potential of
multi-center clinical translation by analysing LUS sever-
ity classification performance of different computational
approaches across datasets from multiple institutions.
We compared a classification model (CM) and a segmen-
tation model (SM), originally developed for artifact seg-
mentation and adapted for severity scoring, across video,
examination, and prognostic levels. This comparison,
performed on two datasets with varying scanner char-
acteristics, yielded several important insights regarding

data heterogeneity.

Before delving into the specific findings, it is impor-
tant to frame the context of our performance evaluation.
A single metric, such as raw accuracy, can be misleading
when assessing an ordinal scoring task like LUS. For this
reason, our analysis relies on a holistic interpretation of
a full suite of metrics, including the confusion matrices
and, most importantly, the Quadratic Weighted Cohen’s
Kappa (K,). The K, is particularly relevant as it offers
a more robust measure of clinical agreement by account-
ing for chance and the degree of error. This is crucial
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given the intended role of these models as prognostic
support systems, where close agreement with an expert
is more valuable than predicting the exact score in every
instance.

One notable finding was the comparable performance
between the CM and SM methods, particularly at the
prognostic level. While the SM method showed slightly
higher K, values overall, both models achieved substan-
tial agreement with clinician annotations on both datas-
ets at this level (CM: K, 0.66 Dataset-1, 0.80 Dataset-2;
SM: K, 0.51 Dataset-1, 0.87 Dataset-2). This suggests
that a segmentation model, despite it was initially trained
for a different task (artifact segmentation), can be effec-
tively adapted for severity scoring, achieving results com-
parable to a pre-trained classification model. While the
CM takes into account the whole image, the SM, using
the segmentation masks, can obtain a relation between
the different artifacts present in the image, which is simi-
lar to the clinical scoring guideline.

However, performance differences emerged at the
video level, particularly concerning scanner variability.
On Dataset-1 (multiple scanners), the CM and SM mod-
els exhibited significant variations in agreement with
clinicians, with the CerberoATL scanner consistently
yielding the lowest K, values. Figure 10 presents rep-
resentative LUS images from each of the scanners used
in this study, highlighting the substantial differences in
image quality. As can be seen in Fig. 10b, the image qual-
ity in ATL probes is different which is most likely the
cause of the drop in performance. In contrast, the Esaote-
MyLab (Fig. 10a), PhilipsIU22 (Fig. 10c), and UltraCOV
(Fig. 10d) images exhibit greater clarity and detail, allow-
ing for better visualization of artifacts and other rel-
evant features. The confusion matrices (Figs. 6 and 7),
combined with the visual differences apparent in Fig. 10,
strongly suggest that these variations in image character-
istics significantly impacted the models’ ability to gener-
alize, particularly on the CerberoATL images.

In addition to the inherent differences between scan-
ners, variations in acquisition technique also likely con-
tributed to the observed performance differences. Factors
such as probe movement and positioning, applied pres-
sure, gain settings, and the use of pre-set imaging filters
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can all significantly affect image quality and the visibil-
ity of key LUS artifacts. While techniques like data aug-
mentation and domain adaptation can help to mitigate
the effects of data heterogeneity [32, 33], our findings
suggest a complementary, and potentially more funda-
mental, approach: standardizing the image acquisition
process itself. The superior performance on Dataset-2,
achieved by both CM and SM despite their different
training paradigms, suggest that a consistent acquisition
protocol can reduce variability in image characteristics
to the point where even models trained under different
conditions can achieve higher accuracy and agreement.
This raises the important question of whether future Al
model development for LUS should prioritize training
on diverse datasets from multiple scanners (to capture
a wider range of variability) or on highly standardized
datasets from a single or a few well-defined scanner/
protocol combinations (to maximize consistency). Our
results, suggest that a combination of both approaches,
standardized acquisition and diverse training data, may
be optimal. This is an important area for future research.

A closer inspection of the per-scanner results provides
a key insight into the models’ generalization capabilities.
The performance of the CM model, particularly its fail-
ure on the Philips IU22 scanner (Fig. 6), can be attrib-
uted to its sensitivity to image geometry. The CM was
trained on cropped sectorial images, making it suscepti-
ble to variations in aspect ratio, which are notably differ-
ent in the Philips images with their greater depth range.
In contrast, the SM model’s robustness to variations in
sector width stems from its pre-processing pipeline. As
detailed in our Methods (Sect. 2.2.2), the conversion of
all input images to a standardized rectangular B-scan for-
mat (illustrated in Fig. 3) effectively decouples the model
from scanner-specific geometric properties. This geo-
metric normalization is likely a critical factor in its ability
to generalize. However, this approach is not without its
own limitations; the SM’s performance can be compro-
mised when processing images from Dataset-1 that have
been cropped in depth, as this alters the aspect ratio of
the resulting B-scan.

Furthermore, within the Dataset-2, a closer exami-
nation of the performance curves for longitudinal and

CerberoATL

EsaoteMylab

PhilipsiU22 Ultracov

Fig. 10 Comparison of LUS image quality across different ultrasound scanners
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transversal acquisitions (Fig. 5a and b) reveals a striking
similarity in the trends observed for both CM and SM
methods. Regardless of the method, accuracy changes in
a near-parallel pattern as the threshold is varied for both
longitudinal and transversal acquisitions. This suggests
that, while the optimal threshold may differ slightly, the
underlying relationship between the strength of the AI’s
prediction (at the frame level) and the overall video-level
severity score is relatively consistent across these two
acquisition views. This consistency suggests that Al mod-
els can learn to exploit these features regardless of the
specific probe orientation, provided that the image qual-
ity is sufficient and consistent.

The agreement between the CM and SM methods
also revealed interesting patterns. While video-level
agreement was higher on Dataset-1 (K, = 0.61) than
Dataset-2 (K,,, = 0.52), prognostic-level agreement
was substantial for both datasets (K, = 0.64 and 0.60,
respectively). This comparable inter-model agreement to
the model-clinician agreement, particularly at the prog-
nostic level, suggests that both models, despite their
architectural differences, are capturing clinically rele-
vant information. This opens the possibility of exploring
ensemble methods, combining CM and SM, to poten-
tially achieve greater robustness. This hypothesis was
explored with promising results in Al-assisted CT diag-
nosis for COVID-19 patients in [34].

A key methodological choice in this study was the
selection of the 1% threshold to translate frame-level
predictions into a definitive video-level score. As shown
in our results, this low threshold provided a good bal-
ance between performance at the video-level and the
more clinically relevant examination and prognostic
levels. This approach also ensures consistency with pre-
vious research [20] and is based on the clinical prin-
ciple of focusing on the most severe findings within an
ultrasound scan. However, we acknowledge this fixed
threshold warrants further investigation. It may not be
optimal for all videos, given the observed variability in
image quality across scanners, and even within the same
scanner (as suggested by the performance fluctuations in
Figs. 4 and 5). A fixed, low threshold could increase sen-
sitivity to noise or artifacts. Therefore, exploring adaptive
thresholding techniques, which dynamically adjust the
threshold based on image characteristics (e.g., signal-to-
noise ratio) could potentially improve the robustness and
accuracy of the models.

Our study has several limitations. While our sample
sizes were sufficient for this initial investigation, larger
datasets would be beneficial for future validation, espe-
cially to increase the statistical power of comparisons
between scanners. The retrospective nature of the study
is another limitation. Because we used pre-existing
data, we could not control for potential selection bias
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in the patient population or ensure standardized LUS
acquisition protocols across all patients and scanners
(as highlighted by the differences between Dataset-1
and Dataset-2). This limits our ability to control for
confounding sources, such as systematic differences in
patient demographics (age, gender) or clinical charac-
teristics (disease stage) between the datasets, and extract
causal conclusions about the relationship between LUS
findings and patient outcomes. While this data was avail-
able, a detailed cohort analysis was considered beyond
the primary scope of this study, which focuses on the
technical comparison of the AI models. Nevertheless, we
acknowledge this as a limitation and an important ave-
nue for future research. Furthermore, a key limitation of
Dataset-2 is the limited number of healthy control exam-
inations (total score 0). As the data acquisition focused
on hospitalized COVID-19 patients, only three exami-
nations were categorized as ‘healthy’ This small number
of healthy controls makes it difficult to draw definitive
conclusions about the method’s ability to accurately clas-
sify it at prognostic-level on Dataset-2, and may partially
explain the observed performance differences between
the CM and SM methods in classifying this specific cat-
egory. Extending the study to include a larger and more
representative sample of healthy individuals would be
valuable for future research. Moreover, extending the
study beyond COVID-19 to include patients with other
pulmonary pathologies would also be valuable to assess
the generalizability of the models. A potential strategy for
this would be to use transfer learning to adapt the cur-
rent models to new datasets containing pathologies such
as bacterial pneumonia or acute heart failure. Addition-
ally, while we used expert annotations as the ground
truth, incorporating the consensus of multiple clinicians
would further mitigate the inherent subjectivity of LUS
interpretation.

Furthermore, a limitation related to the ground truth
ambiguity is revealed by the per-class performance met-
rics (see Appendix Table A1). One of the most frequent
sources of misclassification for both models occurred
not only between Score 0 and Score 1, but also between
Score 1 and Score 2. This finding should be interpreted
not solely as an algorithmic limitation, but also in the
context of real-world clinical challenges. The sonographic
distinction between scores represents a gradual progres-
sion. Establishing a clear threshold is notoriously sub-
jective and a well-documented source of inter-observer
variability among expert clinicians [7, 8]. Therefore, the
models’ difficulty in distinguishing these adjacent classes
likely reflects the inherent ambiguity of the ground truth
labels themselves, suggesting that the models are learning
patterns consistent with human clinical interpretation
challenges.
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Another significant limitation to consider is that the
SM method was trained on images from 27 of the 30
patients within Dataset-2. Consequently, this raises the
possibility of data leakage affecting the method’s results
on this dataset. While this constitutes a methodological
limitation, these results are presented to ensure a com-
prehensive study that includes all possible model and
dataset combinations.

Despite these limitations, the high prognostic-level
agreement, suggests the potential clinical utility of AI-
assisted LUS for risk categorization in pneumonia caused
by COVID-19 infection and potentially in other respira-
tory diseases. This could possible improve resource allo-
cation and patient management, increasing the number
of physicians performing LUS ultrasound, and reducing
inter-observer variability.

Future work should involve larger, prospective, multi-
center studies with diverse patient populations and scan-
ners. Investigating ensemble methods combining CM
and SM (Fig. 11), and exploring techniques to improve
model robustness to scanner variability, and promoting
the standardization of LUS image acquisition protocols,
are crucial.

Conclusions

This study compared two distinct deep learning
approaches, a pre-trained classification model (CM)
and a segmentation model (SM) method, for automated
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lung ultrasound (LUS) severity assessment in patients
with pulmonary infections caused by COVID-19, using
datasets that reflect both multi-scanner and standard-
ized single-scanner scenarios. It was demonstrated that
Al-driven analysis of LUS has significant potential for
evaluating patient risk in this context, with both models
achieving accuracies over 76% comparing with expert
clinicians in determining patient severity at the prog-
nostic level (Table IV). It was also demonstrated that
a segmentation model, originally designed for artifact
identification, could be effectively repurposed for sever-
ity scoring, achieving a level of agreement comparable to
that of a dedicated, pre-trained classification model. At
the video level, while agreement with clinicians varied
across datasets and models, the use of a 1% threshold on
frame-level predictions proved to be a practical approach
for generating video-level scores. Furthermore, the exam-
ination-level analysis highlighted that the majority of
examinations across both models and datasets showed
an acceptable level of error, providing further support for
the feasibility of Al-assisted LUS interpretation.

Beyond demonstrating the potential for Al-powered
LUS analysis, our study also revealed a critical factor
influencing model performance, particularly at the prog-
nostic level: the variability in image acquisition. The sig-
nificantly improved results on Dataset-2, acquired with
a single scanner and a standardized protocol, compared
to the multi-scanner Dataset-1, suggest that consistent

Fig. 11 Sample of possible future implementation combining segmentation with classification on LUS: marking Pleura (blue), A-lines (green), vertical
artifacts (orange), consolidations (red) and the respective predicted score. Images from Dataset-1 applying SM and CM methods
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Table 7 Per-class precision, recall, and F1-score at the video-level
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Dataset Model Metric Score 0 Score 1 Score 2 Score 3
Dataset-1 (@Y Precision 047 0.27 0.55 0.70
Recall 0.81 0.05 0.59 0.59
F1-Score 0.58 0.09 0.57 0.64
SM Precision 052 0.31 0.51 048
Recall 0.54 0.31 028 0.74
F1-Score 0.53 0.31 0.36 0.58
Dataset-2 M Precision 0.73 0.18 0.39 0.79
Recall 0.69 0.39 029 0.54
F1-Score 0.71 0.25 033 0.64
SM Precision 0.87 0.39 047 0.68
Recall 0.87 035 035 0.82
F1-Score 0.87 0.37 040 0.74
Funding

image quality, achieved through standardization, is a
key determinant of reliable Al-driven prognostic assess-
ments. This has direct implications for the successful
clinical implementation of Al-assisted LUS, emphasizing
the need for standardized examination protocols.

In conclusion, this research provides strong evidence
for the clinical utility of Al-powered LUS analysis, par-
ticularly for prognostic assessment, while simultaneously
highlighting the importance of data quality and standard-
ization for achieving reliable and generalizable results.
The similar performance between the segmentation-
based method and the pre-trained classification model
highlights the ability of both approaches to generalize
effectively to patients and scanners excluded from the
training phase. The successful completion of this study,
involving the analysis of multi-center data from diverse
clinical settings, underscores the crucial role of interna-
tional and multidisciplinary collaborations in advancing
the field of AI for LUS. Such collaborations are essential
not only for accessing diverse datasets, but also for pro-
moting the exchange of expertise necessary to develop
and validate AI methods that can truly benefit patients,
contributing to earlier and more accurate diagnoses.

Appendix 1
See Table 7.
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