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Abstract
Lung ultrasound (LUS) interpretation is often subjective and operator-dependent, motivating the development of 
automated, artificial intelligence (AI)-based methods. This international, multi-center study evaluated two distinct 
deep learning approaches for automated LUS severity scoring for pulmonary infections caused by COVID-19: a 
pre-trained classification model (CM) and a segmentation model based method (SM); assessing performance at 
video, exam, and prognostic levels. Two datasets were analyzed: one comprising data from multiple scanners and 
another using data from a single scanner. Results showed that the SM achieved prognostic-level agreement with 
expert clinicians comparable to that of the CM. Furthermore, at the exam level, over 84% of examinations were 
classified with acceptable error (≤ 10 score difference) across both models and datasets, reaching both methods 
an agreement higher than 95% on the dataset acquired by a single scanner. The obtained results demonstrate the 
potential of AI-assisted LUS for reliable prognostic assessment and highlight that image quality and acquisition 
technique are key factors in achieving consistent and generalizable model performance, as well as the potential for 
international clinical translations.
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Introduction
Lung ultrasound (LUS) has rapidly evolved into an essen-
tial tool for assessing pulmonary conditions in a vari-
ety of clinical scenarios, particularly in critical care and 
emergency medicine. Its portability, safety, lack of ion-
izing radiation, and cost-effectiveness make it an attrac-
tive alternative to other imaging techniques, especially 
in resource-limited scenarios or for bedside assessments 
[1]. Its utility has been particularly recognized in the con-
text of infectious diseases, such as pneumonia caused by 
COVID-19 infection [2, 3], where it played a crucial role 
in assessing lung involvement and monitoring patients by 
identifying characteristic sonographic features, including 
lung consolidations, pleural effusions, vertical artifacts 
and pleural irregularities [4–6].

However, despite its advantages, the accurate inter-
pretation of LUS images requires significant expertise 
and experience. Identifying and classifying sonographic 
patterns can be challenging, even for trained clinicians, 
and is susceptible to inter-observer variability [7–9]. This 
subjectivity can impact diagnostic accuracy and patient 
management, highlighting the need for tools that can 
assist clinicians in LUS interpretation [10].

Artificial intelligence (AI) has emerged as a promising 
solution to further reduce the inter-observer variability 
and enhance the diagnostic capabilities of LUS, as well 
as in other medical fields [11, 12]. AI algorithms, par-
ticularly deep learning models, excel at recognizing com-
plex patterns and features in signals and medical images, 
enabling enhanced analysis and interpretation. For exam-
ple, in the field of radiology, deep learning models have 
been successfully applied to detect and classify various 
abnormalities in chest X-rays, such as pneumonia, pneu-
mothorax, and lung nodules [13, 14]. In cardiology, AI 
algorithms have been proposed to analyse electrocardio-
grams (ECGs) for the early detection of heart arrhyth-
mias and other cardiovascular diseases [15].

In the context of LUS, AI models can be broadly cat-
egorized into two types: segmentation models, which 
focus on delineating characteristic ultrasound artifacts 
(e.g., vertical artifacts, pleural line irregularities, or areas 

of consolidation), and classification models, which aim to 
categorize LUS images into predefined classes (e.g., nor-
mal vs. abnormal tissue or severity scores).

Several studies have shown promising results in apply-
ing AI to LUS interpretation. For instance, in [16] a deep 
learning model was developed for the real-time multi-
class segmentation of artifacts, achieving high accuracy 
and speed. In [17], Deep Learning (DL) was applied 
to lung ultrasound videos for scoring pneumonia in 
COVID-19 patients, demonstrating the potential of AI 
for the assessment of lung abnormalities. Furthermore, in 
[18, 19] DL models were presented for the detection and 
localization of vertical artifacts and COVID-19 markers 
in LUS images, respectively, demonstrating the potential 
of AI for various clinical applications.

One of the scoring systems for LUS severity classifica-
tion is presented in [5] ranging from 0 to 3, where:

 	• 0 indicates an aerated lung appearance. The pleura 
line is continuous and horizontal artifacts (A-lines) 
are present,

 	• 1 represents mild abnormalities, vertical artifacts 
without broken pleural line are visible,

 	• 2 corresponds to moderate abnormalities. The 
pleural line is broken with vertical artifacts 
affecting < 50% of the pleura. Small to large 
consolidated areas could appear.

 	• 3 indicates severe abnormalities, where wide vertical 
artifacts appear affecting > 50% of the pleural line 
with or without extensive consolidations.

In Fig.  1, an example of the LUS score image classifica-
tion is shown. These individual scores are then combined 
to generate an overall lung score, which provides an 
objective and standardized assessment of lung involve-
ment, aiding in diagnosis, prognosis, and treatment deci-
sions [20, 21]. However, the accurate assignment of these 
scores to LUS videos can be challenging, as it often relies 
on subjective visual assessment and the determination 
of a threshold for the presence and extent of lung abnor-
malities. Furthermore, clinicians need to decide how 

Fig. 1  LUS score classification
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many frames with a particular abnormality are required 
to assign a specific score to the entire video. Currently, 
this threshold is often determined subjectively, leading to 
potential inconsistencies in scoring.

While the literature demonstrates the potential of DL 
in LUS, a question remains regarding the generalizabil-
ity and performance of different AI paradigms. To date, 
no large-scale study has performed a direct evaluation 
of DL-based methods across international, multi-center, 
and multi-scanner LUS datasets. This gap in the literature 
makes it difficult for the clinical and scientific community 
to assess the robustness of these distinct approaches in 
real-world settings, where data heterogeneity caused by 
patient population differences, acquisition protocols, and 
scanner variations represents a major challenge.

Building on our previous work in deep learning-based 
algorithms for real-time LUS assisted diagnosis [22] and 
AI-based scoring systems for assessing lung abnormal-
ity severity [23], this study aims to address this gap by 
evaluating the performance of different computational 
approaches in LUS scoring on an international multi-
center, multi-scanner dataset. The goal is to demonstrate 
how these approaches can assist clinicians in LUS prog-
nosis. The analysis is conducted at three levels: video 
(assessing individual LUS clips), examination (aggregat-
ing findings from all videos of a single patient to deter-
mine an overall severity score) and prognostic (predicting 
patient outcomes based on the LUS findings). Addition-
ally, this research investigates the impact of scanner vari-
ability on models performance, by comparing the results 

obtained on videos acquired with different ultrasound 
scanners.

Materials and methods
This international multi-center and multi-scanner study 
was conducted as a collaborative effort between the 
Ultrasonic Systems and Technologies Group (GSTU) at 
the Spanish National Research Council (CSIC) in Madrid, 
Spain, and the ULTRa Lab group at the University of 
Trento in Trento, Italy. The study involved the evaluation 
of two AI methods on a diverse dataset of LUS images 
and videos acquired from multiple centers. The details of 
the study design, data acquisition, AI models, and evalua-
tion methods are described in the following subsections.

Dataset
The data used to perform this study contains a total 
of 2219 videos consisting of 365,506 frames acquired 
from different hospitals in Italy and Spain of COVID-
19 patients and annotated, from score 0 to score 3 on 
the video level, by a panel of expert clinicians, each with 
more than ten years of dedicated experience in thoracic 
ultrasound. For clarity, we will differentiate between two 
distinct datasets explained in detail bellow. In Fig.  2a 
schematic overview of the dataset is shown. Both data-
sets were acquired in accordance with the guidelines 
of the Declaration of Helsinki and approved by the 
Ethical Committee of the Fondazione Policlinico Uni-
versitario San Matteo (protocol 20200063198), of the 
Fondazione Policlinico Universitario Agostino Gemelli, 

Fig. 2  Overview of the dataset of the study
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Istituto di Ricovero e Cura a Carattere Scientifico (pro-
tocol 0015884/20 ID 3117) and approved by the Institu-
tional Review Board of Hospital Universitario Puerta de 
Hierro (approval code PI47-21, protocol version 3.0 and 
date of approval 5 April 2021).

Dataset-1
This dataset was acquired between 2020 and 2021 in the 
study described in [24] and used by the ULTRa Lab team 
for previous research evaluating the performance of Deep 
Learning models in LUS prognostic. For the development 
of this work we will use 1530 videos acquired from 83 
patients following the 14 regions’ acquisition protocol 
obtaining a total of 113 examinations. This multicenter 
dataset is composed of images from three different ultra-
sound scanners: Esaote Mylab50, Philips IU22 and ATL 
Cerbero; applying different imaging configurations: fre-
quency from 2.5 MHz to 10 MHz and depths from 5 to 
30  cm, depending on the patient and the scanner used, 
as explained in [24], using both convex and linear probes, 
reflecting a real-world multi-center and multi-scanner 
nature. For complete details on patient recruitment, 
including inclusion and exclusion criteria, readers are 
referred to the original publication [24].

Dataset-2
This dataset comprises data collected in 2021 from 
patients hospitalized with COVID-19. It was obtained 
in the clinical study described in [25] and used in previ-
ous work by the CSIC team to develop and evaluate AI 
algorithms for computer-aided diagnosis in LUS. The 
full recruitment protocol is available in the original pub-
lication [25]. It is composed of 689 LUS videos from 30 
patients applying the 12 lung regions’ protocol. The 
UltraCOV equipment was used with a 3.5  MHz convex 
probe and following a standardized scanning criteria [26] 
where imaging configuration (focus, range, sector scan, 
…) and probe position was fixed trying to minimize the 
impact of its variability in the initial study. Each patient 
was examined with two standardized probe orientations: 
longitudinal, where the probe is aligned parallel to the 
ribs with its marker pointing towards the patient’s head, 
and transversal, where the probe is rotated 90 degrees 
perpendicular to the ribs. This resulted in a total of 59 
examinations.

AI methods
As previously mentioned, this study evaluates two dis-
tinct Deep Learning-based methods for computer-aided 
diagnosis in lung ultrasound: a classification model and 
a method based on segmentation models of lung ultra-
sound images.

Classification model method (CM)
The classification model utilizes a ResNet18 [27] archi-
tecture to classify lung ultrasound images according to 
the 4-level severity score. ResNet18 is a convolutional 
neural network (CNN) known for its effectiveness in 
image classification tasks and its ability to handle com-
plex patterns. This model was previously developed and 
tested in the study described in [23], where it demon-
strated good performance in classifying LUS images. The 
model was trained on a dataset of 58,924 LUS images 
acquired with a variety of scanners, including Min-
drayDC-70 Exp®, EsaoteMyLabAlpha®, ToshibaAplio XV®, 
and CerberoATL, as detailed in [23], including images 
from patients with varying degrees of lung severity [5]. 
As described in their methodology [23], a pre-processing 
step involving image cropping was applied to remove 
noise to the input of the network. This process, however, 
does not normalize the geometric aspect ratio of the 
underlying sonographic image.

Segmentation model method (SM)
The segmentation model employs an Attention U-Net 
architecture to segment artifacts in LUS images. Prior to 
being fed into the network, each raw sectorial ultrasound 
frame is converted into a rectangular B-scan image 
through a scan conversion process (see Fig. 3). This pre-
processing step standardizes the input geometry, mak-
ing the model independent of variations in probe sector 
width and shape across different scanners. The model 
used in this study was trained on a dataset of 9159 LUS 
images, acquired exclusively with the UltraCOV equip-
ment, and its output is further processed by a post-pro-
cessing algorithm described in [22], which refines the 
segmentation results and reduces false positives. Stan-
dard regularization techniques, including dropout, were 
employed during training to mitigate the risk of overfit-
ting. This approach has shown promising results in pre-
vious studies demonstrating its ability to segment key 
artifacts in LUS images. Once the segmentation is per-
formed, the presence and magnitude of different abnor-
malities, such as vertical artifacts and consolidations, are 
quantified, the severity score is assigned to each image 
according to the 4-level scoring system described in the 
introduction. It is important to note that the training set 
for this model included images from 27 of the 30 patients 
who also constitute Dataset-2.

A key advantage of this segmentation approach is its 
ability to provide detailed information about the loca-
tion and extent of different abnormalities in LUS images. 
This allows for a more comprehensive assessment of lung 
severity compared to classification models. However, the 
development of accurate segmentation models for LUS 
faces challenges, particularly the need for large amounts 
of labelled data. Frame-by-frame manual annotation of 
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LUS videos is time-consuming and requires expertise. To 
overcome this limitation, in [22] a semi-automatic label-
ling algorithm was employed reducing significantly the 
manual annotation effort.

Analysis
This study employed a multi-level analysis approach, 
covering video, examination, and prognostic levels. By 
evaluating the performance of the methods at these dif-
ferent levels, it provides a more complete understanding 
of the potential benefits and limitations of AI-assisted 
LUS interpretation. Additionally, the performance of 
each method will be analyzed for each scanner at video-
level, allowing for a detailed assessment of the impact of 
scanner variability on the results, as well as a coherence 
analysis between both CM and SM method.

Video-level analysis
At the video level, the performance of both methods was 
evaluated by comparing the AI-generated predictions 
with the ground truth annotations provided by expert cli-
nicians. The AI models predict a severity score for each 
frame in a LUS video. To obtain an overall score for the 
video, a thresholding technique [17] was employed, by 
identifying the highest severity score present in a per-
centage of the video frames. To account for potential 
inter-observer variability in the ground truth annota-
tions, the analysis was also performed with a tolerance 
of 1 and 2 errors per video. This means that a video was 
considered correctly classified if the AI prediction was 
within 1 or 2 score levels of the ground truth annotation, 
respectively.

The performance of each method at the video level was 
evaluated using several metrics, including:

 	• Accuracy: The proportion of correctly classified 
videos.

 	• F1-score: The harmonic mean of precision and recall.
 	• Quadratic Weighted Cohen’s Kappa (Kqwc): A 

measure of agreement between two raters, taking 
into account chance agreement [28]. In Table 1 the 
interpretation of Kqwc is shown [29].

 	• Spearman’s rank correlation coefficient (ρ): A non-
parametric measure used to assess the degree of 
correlation without assuming a linear relationship 
between the predicted and ground truth scores.

In addition to these metrics, confusion matrices were 
generated to provide a more detailed visualization of the 
performance of each method, showing the distribution 
across the different scoring classes.

Examination-level analysis
The examination-level analysis evaluates the performance 
of the AI models in predicting patient-level outcomes 
based on the aggregation of video-level scores. For each 
examination, the AI-generated scores for individual LUS 
videos were summed to obtain an overall examination 
score, considering the number of lung regions explored, 
12 or 14 regions, obtaining values from 0 to 36 or 42 

Table 1  Table of interpretation agreement for quadratic 
weighted cohen’s kappa
Value Agreement
Kqwc ≤ 0 Poor
0 < Kqwc ≤ 0.2 Slight
0.2 < Kqwc ≤ 0.4 Fair
0.4 < Kqwc ≤ 0.6 Moderate
0.6 < Kqwc ≤ 0.8 Substantial
0.8 < Kqwc ≤ 1 Almost perfect

Fig. 3  Illustration of the scan conversion pre-processing step applied in the SM method. The raw sectorial LUS image (left) is transformed into a standard-
ized rectangular B-scan image (right) before being input into the segmentation network
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respectively. The AI-predicted scores were then com-
pared to the ground truth assigned by expert clinicians.

We adopted the error tolerance defined in a founda-
tional multi-center study by Mento et al. [17], where scor-
ing errors of ≤ 10 at the examination level were deemed 
clinically acceptable.

Prognostic-level analysis
The prognostic-level analysis aims to evaluate the ability 
of the AI models to predict patient outcomes based on 
their LUS scores. Two different prognostic classification 
schemes were used, depending on the LUS acquisition 
protocol to maintain consistency with previous studies:

 	• Binary classification for 14-region protocol: For 
Dataset-1, which followed a 14-region acquisition 
protocol, a binary classification scheme was used 
to categorize patients into two risk groups: low risk 
(score ≤ 24) and high risk (score > 24). This approach 
is based on the study [30], which demonstrated 
the ability of a 14-region LUS protocol to predict 
worsening in patients with COVID-19 pneumonia. 
Dataset-1 contains 64 exams classified by clinicians 
as low risk and 49 exams as high risk.

 	• Multi-class classification for 12-region protocol: For 
Dataset-2, which followed a 12-region acquisition 
protocol, a multi-class classification scheme was 
used to categorize patients into four severity levels: 
healthy (score = 0), mild (score 1–7), moderate (score 
8–18), and severe (score ≥ 19). This classification is 
based on the study [31], which investigated the use 
of bedside ultrasound for the noninvasive assessment 
of lung lesions in patients with COVID-19. Dataset-2 
contains 3 exams classified as healthy, 12 as mild, 29 
as moderate and 15 as severe.

Due to these different classification schemes (binary vs. 
four-level), Weighted Cohen’s Kappa (Kqwc) values are not 
directly comparable between Dataset-1 and Dataset-2 
at the prognostic level. Therefore, while Kqwc is used to 
assess agreement within each dataset, results are pre-
sented and discussed separately.

AI methods agreement: CM vs. SM
To assess the agreement of the two AI methods (CM and 
SM), their predictions were compared at each level of 
analysis: video, examination, and prognostic. The agree-
ment between the models was assessed using Weighted 
Cohen’s Kappa coefficient (Kqwc), and the correlation 
between two models was evaluated using Spearman’s 
rank correlation coefficient (ρ), as well as obtaining the 
accuracy and F1-Score to provide additional context. This 
analysis allows us to evaluate the consistency of the two 
AI methods in interpreting LUS images and predicting 

patient outcomes, and to identify potential areas where 
the models complement each other.

Results
Threshold selection
Figures 4 and 5 show the performance of the CM and SM 
methods at the video, examination, and prognostic levels 
for different threshold values in Dataset-1 and Dataset-2, 
respectively. The x-axis represents the threshold and the 
y-axis represents the accuracy, defined as the propor-
tion of correctly classified videos or examinations. In 
both cases, a range of thresholds from 1 to 100% of the 
frames was tested. Table 2 summarize the results on both 
datasets.

Dataset-1
In Fig. 4, we can observe the trend, in term of accuracy, 
of both methods. The CM method (Fig.  4a) achieves 
its highest agreement using a threshold of 2% obtain-
ing an accuracy of 53.40%. On the other hand, the SM 
method (Fig. 4b) obtains its best result with a threshold 
of 4% achieving an accuracy of 47.58%. These results at 
video level are shown by the solid green lines in Fig. 4a 
and b. The dashed and dotted green lines in Fig. 4a and 
b represent the performance with a tolerance of ± 1 and 
± 2 error respectively, where both methods show similar 
performance.

Figure 4c and d show the performance at the examina-
tion and prognostic levels. The red lines represent the 
prognostic-level accuracy, while the blue lines represent 
the examination-level accuracy. The CM method (Fig. 4c) 
achieves its best result at both levels with a 1% thresh-
old obtaining an accuracy of 84.07%. On the other hand, 
the SM method (Fig. 4d) shows a higher performance at 
the examination level with a 2% threshold achieving an 
accuracy of 88.50%. However, at the prognostic level, the 
SM method achieves its best result with a threshold of 1% 
obtaining an accuracy of 76.11%.

Dataset-2
Figure 5 shows the performance of both solutions on 
Dataset-2. At the video level, the CM solution (Fig.  5a) 
achieves its best result with a threshold of 2% obtaining 
an accuracy of 55.73% without error tolerance. The SM 
solution (Fig. 5b) achieves its best result with a threshold 
of 3% obtaining an accuracy of 71.51%. At the exam level, 
the CM solution (Fig. 5c) maintains a good performance 
with a 1% threshold, obtaining an accuracy of 96.61%, 
while the SM solution (Fig.  5d) achieves its best result 
with a threshold of 1% with an accuracy of 100%. At the 
prognostic level, the SM solution performs better, obtain-
ing an accuracy of 83.05% with a threshold of 1%. On the 
other hand, the CM solution achieves a performance of 
76.27% with a threshold of 1%. Both solutions show high 
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accuracies applying error tolerance of ± 1 and ± 2: 88.10% 
and 97.10% respectively for CM, and 92.35% and 97.90% 
for SM.

Furthermore, Fig. 5a and b also show the performance 
of both solutions for longitudinal (blue) and transversal 
(red) acquisitions separately. The results indicate that 
both solutions achieve similar performance for both 
types of acquisitions, with a slight advantage for longitu-
dinal acquisitions.

Based on these results, a 1% threshold was selected for 
all subsequent video-level, examination-level, and prog-
nostic-level analyses presented in this study.

Video-level performance
This section examines the performance of both the Clas-
sification Model (CM) and Segmentation Model (SM) 
methods at the video level on Dataset-1 and Dataset-2, 
using the optimal 1% threshold determined in Sect. 3.1. 

A comparative analysis of performance across different 
ultrasound scanners is presented in Sect.  3.2.3. Table  3 
summarizes the performance metrics for CM and SM 
methods on both datasets.

A detailed per-class analysis was also conducted to bet-
ter understand the models’ performance on each specific 
LUS score. The complete precision and recall metrics 
for each class are presented in Appendix Table 7. These 
results quantitatively show that for both models, the pri-
mary source of misclassification occurred in the interme-
diate scores, particularly in distinguishing Score 1 from 
Scores 0 and 2. A full interpretation of these findings in 
the context of clinical challenges is provided in the Dis-
cussion section.

CM method
The CM method showed Kqwc values of 0.63 (Dataset-1) 
and 0.66 (Dataset-2), indicating substantial agreement 

Fig. 4  Threshold evaluation at video, examination and prognostic level for Dataset-1. a) and b) show video level performance for CM and SM respectively, 
while c) and d) show exam (blue) and prognostic (red) results. For each curve, the optimal threshold and its corresponding accuracy are indicated in the 
legend and visually marked with a point on the graph
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with the clinicians’ annotations. While overall accuracies 
were 0.53 and 0.55 for Dataset-1 and Dataset-2 respec-
tively, the Kqwc values provide a more relevant measure of 
agreement beyond chance. F1-scores were 0.47 for Data-
set-1 and 0.48 for Dataset-2, and Spearman’s correlation 
(ρ) values were 0.65 for Dataset-1 and 0.64 for Dataset-2. 

Accuracies with ± 1 tolerance increased to 0.86 for Data-
set-1 and 0.88 for Dataset-2. With a ± 2 tolerance, accu-
racy further increased to 0.98 and 0.97, respectively.

The overall confusion matrices for the CM method 
(Fig.  6) show the distribution of predicted versus true 
scores including the performance across different scan-
ners, which is discussed further below. For Dataset-1, the 
most frequent misclassification was for videos with a true 
score of 1, often misclassified as 0 or 2. For Dataset-2, 
the confusion matrix diagonal is more consistent, corre-
sponding to the higher Kqwc value.

SM method
The SM method achieved Kqwc values of 0.58 (Dataset-1, 
moderate agreement) and 0.79 (Dataset-2, substantial 
agreement). Accuracies were 0.46 and 0.71 on Data-
set-1 and Dataset-2, respectively. With ± 1 tolerance, 

Table 2  Summary of agreement with best threshold
Level Dataset-1 Dataset-2

CM SM CM SM

Acc (%) Thr (%) Acc (%) Thr (%) Acc (%) Thr (%) Acc (%) Thr (%)
Video 53.40 2 47.58 4 55.73 2 71.51 3
Exam 84.07 1 88.50 2 96.61 1 100 1
Prognostic 84.07 1 76.11 1 76.27 1 83.05 1

Table 3  Performance metrics for CM and SM method at video-
level
Metric Dataset-1 Dataset-2

CM SM CM SM
Accuracy 0.53 0.46 0.55 0.71
± 1 tolerance acc 0.86 0.87 0.88 0.92
± 2 tolerance acc 0.98 0.97 0.97 0.98
F-1 Score 0.47 0.44 0.48 0.60
Kqwc 0.63 0.58 0.66 0.79
ρ 0.65 0.59 0.64 0.80

Fig. 5  Threshold evaluation at video, examination and prognostic level for Dataset-2. a and b show video level performance for CM and SM respectively, 
while c and d show exam (blue) and prognostic (red) results. For each curve, the optimal threshold and its corresponding accuracy are indicated in the 
legend and visually marked with a point on the graph
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Fig. 6  Confusion matrices for CM method in Dataset-1 and Dataset-2 as well as calculated for each machine
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accuracies were 0.87 and 0.92. With ± 2 tolerance, accu-
racies were 0.97 and 0.98 respectively. F1-scores were 
0.44 (Dataset-1) and 0.60 (Dataset-2), and Spearman’s ρ 
values were 0.59 (Dataset-1) and 0.80 (Dataset-2).

The overall confusion matrices for the SM method 
(Fig.  7) show that the model performed well classifying 
scores 0 and 3 in both datasets, with more misclassifi-
cations for intermediate scores in Dataset-1. The higher 
Kqwc value and stronger diagonal in the Dataset-2 confu-
sion matrix reflect the improved performance with the 
standardized dataset. Figure  7 also includes results of 
performance for this method across different scanners, 
which are discussed below.

Exam-level performance
This section presents the exam-level performance of the 
CM and SM methods, comparing AI-predicted exami-
nation scores to the ground truth scores. Figure 8 shows 
the distribution of scoring errors ranges between method 
prediction and clinician evaluation.

CM method
For the CM method, the error distribution differed 
between the two datasets (Fig. 8). 84.1% of examinations 
on Dataset-1 had an acceptable error (≤ 10). On Data-
set-2, the CM method showed a different pattern obtain-
ing 96.6% of examinations with an acceptable error.

SM method
The SM method also exhibited different error distri-
butions across the two datasets (Fig.  8). On Dataset-1, 
12.4% of exams had errors greater than 10. This resulted 
in 87.6% of examinations with an acceptable error on 
Dataset-1. On Dataset-2, the SM method showed the 
best performance at the examination level with no errors 
greater than 10, resulting in 100% of examinations with 
an acceptable error.

Prognostic-level
This section assesses the performance of the CM and 
SM methods at the prognostic level. As described in the 
Methods section, this analysis uses different classification 
schemes for Dataset-1 (binary classification: low risk vs. 
high risk) and Dataset-2 (four-level classification: healthy, 
mild, moderate, severe). Performance is evaluated using 
F1 score, accuracy, ρ and Kqwc, and confusion matrices 
which are represented in the Table 4; Fig. 9.

CM method
For Dataset-1, the CM method achieved an accuracy of 
0.84, an F1-score of 0.83, and a Kqwc of 0.66, indicating 
substantial agreement (according to Table I). The confu-
sion matrix (Fig. 9, top left) reveals that while the model 
correctly classified a high percentage of ‘low risk’ cases 

(96.88%), it was less accurate in classifying ‘high risk’ 
cases (67.35% correct). On Dataset-2 the CM method 
achieved an accuracy of 0.76, an F1-score of 0.69, and a 
Kqwc of 0.80, also representing substantial agreement. 
The confusion matrix (Fig. 9, bottom left) shows moder-
ate performance for the ‘healthy’ category (33.33%) and 
excellent performance for the ‘mild’ category (91.67%). 
However, there is more confusion between the ‘healthy’ 
and ‘mild’ categories, and between the ‘moderate’ and 
‘severe’ categories.

SM method
For Dataset-1, the SM method achieved an accuracy of 
0.76, an F1-score of 0.76, and a Kqwc of 0.51, indicating 
moderate agreement. The confusion matrix (Fig.  9, top 
right) shows that 79.69% of ‘low risk’ and 71.43% of ‘high 
risk’ cases were correctly classified. On Dataset-2, the SM 
method achieved an accuracy of 0.83, an F1-score of 0.86, 
and a Kqwc of 0.87, representing substantial agreement. 
The confusion matrix (Fig. 9, bottom right) reveals good 
performance for the ‘healthy’ (100%), ‘mild’ (66.67%), 
‘moderate’ (86.21%) and ‘severe’ (86.67%) categories.

Agreement between AI methods: CM vs. SM
This section evaluates the agreement between the pre-
dictions of both methods at the video, examination, 
and prognostic levels (see Table  5 for all metrics). At 
the video level, agreement was substantial on Dataset-1 
(Kqwc = 0.61) and moderate on Dataset-2 (Kqwc = 0.52). 
While video-level accuracies were similar (around 0.49–
0.50), the Kqwc values suggest a higher level of agreement 
beyond chance on Dataset-1. Considering tolerance for 
minor disagreements, the video-level accuracy with a ± 1 
tolerance was 0.86 on Dataset-1 and 0.81 on Dataset-2, 
and with a ± 2 tolerance, it increased to 0.95 and 0.92, 
respectively. At the examination level, the percentage of 
examinations with an acceptable error (≤ 10) was 83.2% 
for Dataset-1 and 86.4% for Dataset-2. At the prognostic 
level, agreement was substantial for both Dataset-1 (Kqwc 
= 0.64, binary classification) and Dataset-2 (Kqwc = 0.60, 
four-level classification).

Performance of each method on different scanners
Given the comparable results obtained in both datasets 
for both solutions, the question arises as to how they will 
behave on different devices and whether there may be 
factors affecting the implementation of AI-based meth-
ods on different devices.

For this reason, this subsection compares the perfor-
mance of the CM and SM methods across the different 
ultrasound scanners, primarily focusing on the Weighted 
Cohen’s Kappa (Kqwc) as a measure of agreement with 
clinician annotations. Table  6 presents the performance 
metrics, and Figs. 6 (CM) and 7 (SM) show the confusion 
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Fig. 7  Confusion matrices for SM method in Dataset-1 and Dataset-2 as well as calculated for each machine
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matrices of method performance acquired by each 
scanner.

For Dataset-1, which employed EsaoteMyLab, Cer-
beroATL, and PhilipsIU22 scanners, significant variabil-
ity in agreement (Kqwc) was observed for both the CM 
and SM methods.

Analyzing the CM method (Fig.  6; Table 6), the high-
est Kqwc value was achieved on the EsaoteMyLab scan-
ner (0.62), indicating substantial agreement according 
to Table I. The PhilipsIU22 scanner showed a lower Kqwc 
of 0.34 (fair agreement), despite having the highest accu-
racy (0.72). The CerberoATL scanner exhibited the low-
est Kqwc (0.31, fair agreement) and the lowest accuracy 
(0.42) for the CM method. The confusion matrix for 

CerberoATL reveals a tendency for the model to overes-
timate the severity score.

Examining the SM method (Fig.  7; Table  6), a simi-
lar pattern emerges in Dataset-1. The highest Kqwc was 
observed on the EsaoteMyLab scanner (0.59, moderate 
agreement). The PhilipsIU22 scanner had a Kqwc of 0.55 
(moderate agreement), and the CerberoATL scanner 
had the lowest Kqwc (0.16, slight agreement). As with the 
CM method, the SM method’s confusion matrix for Cer-
beroATL demonstrates a high degree of misclassification 
across all scores, except for score 3.

In contrast to Dataset-1, Dataset-2 utilized the Ultra-
COV scanner with standardized acquisition settings, 
which demonstrates consistently higher agreement for 
both models. The CM method achieved a Kqwc of 0.66 
(substantial agreement), and the SM method achieved 
a Kqwc of 0.79 (substantial agreement). The confusion 
matrices for Dataset-2 (Figs. 6 and 7) show a clearer diag-
onal for both models, indicating better overall agreement 
with the clinician annotations.

Table 4  Performance metrics for CM and SM method at 
prognostic level
Metric Dataset-1 Dataset-2

CM SM CM SM
Accuracy 0.84 0.76 0.76 0.83
F-1 Score 0.83 0.76 0.69 0.86
Kqwc 0.66 0.51 0.80 0.87
ρ 0.69 0.51 0.82 0.84

Fig. 8  Error distribution at the examination level for CM and SM methods
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Discussions
The main goal of this study was to explore the potential of 
multi-center clinical translation by analysing LUS sever-
ity classification performance of different computational 
approaches across datasets from multiple institutions. 
We compared a classification model (CM) and a segmen-
tation model (SM), originally developed for artifact seg-
mentation and adapted for severity scoring, across video, 
examination, and prognostic levels. This comparison, 
performed on two datasets with varying scanner char-
acteristics, yielded several important insights regarding 

model performance, generalizability, and the impact of 
data heterogeneity.

Before delving into the specific findings, it is impor-
tant to frame the context of our performance evaluation. 
A single metric, such as raw accuracy, can be misleading 
when assessing an ordinal scoring task like LUS. For this 
reason, our analysis relies on a holistic interpretation of 
a full suite of metrics, including the confusion matrices 
and, most importantly, the Quadratic Weighted Cohen’s 
Kappa (Kqwc). The Kqwc is particularly relevant as it offers 
a more robust measure of clinical agreement by account-
ing for chance and the degree of error. This is crucial 

Table 5  Agreement metrics between methods: CM vs. SM
Dataset-1 Dataset-2

Level Acc F-1 Kqwc ρ Acc F-1 Kqwc ρ
Video 0.49 0.44 0.61 0.64 0.50 0.40 0.52 0.51
Exam 0.83 - - - 0.86 - - -
Prognostic 0.83 0.82 0.64 0.66 0.56 0.53 0.60 0.66

Table 6  Table of comparison results metrics by scanner at video-level
Dataset-1 Dataset-2

Metric EsaoteMylab CerberoATL PhilipsIU22 UltraCOV

CM SM CM SM CM SM CM SM
Accuracy 0.52 0.46 0.42 0.35 0.72 0.52 0.55 0.71
F-1 Score 0.46 0.44 0.34 0.27 0.39 0.43 0.48 0.60
Kqwc 0.62 0.59 0.31 0.16 0.34 0.55 0.66 0.79
ρ 0.65 0.59 0.40 0.32 0.41 0.59 0.64 0.80

Fig. 9  Confusion matrices at the prognostic level
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given the intended role of these models as prognostic 
support systems, where close agreement with an expert 
is more valuable than predicting the exact score in every 
instance.

One notable finding was the comparable performance 
between the CM and SM methods, particularly at the 
prognostic level. While the SM method showed slightly 
higher Kqwc values overall, both models achieved substan-
tial agreement with clinician annotations on both datas-
ets at this level (CM: Kqwc 0.66 Dataset-1, 0.80 Dataset-2; 
SM: Kqwc 0.51 Dataset-1, 0.87 Dataset-2). This suggests 
that a segmentation model, despite it was initially trained 
for a different task (artifact segmentation), can be effec-
tively adapted for severity scoring, achieving results com-
parable to a pre-trained classification model. While the 
CM takes into account the whole image, the SM, using 
the segmentation masks, can obtain a relation between 
the different artifacts present in the image, which is simi-
lar to the clinical scoring guideline.

However, performance differences emerged at the 
video level, particularly concerning scanner variability. 
On Dataset-1 (multiple scanners), the CM and SM mod-
els exhibited significant variations in agreement with 
clinicians, with the CerberoATL scanner consistently 
yielding the lowest Kqwc values. Figure  10 presents rep-
resentative LUS images from each of the scanners used 
in this study, highlighting the substantial differences in 
image quality. As can be seen in Fig. 10b, the image qual-
ity in ATL probes is different which is most likely the 
cause of the drop in performance. In contrast, the Esaote-
MyLab (Fig. 10a), PhilipsIU22 (Fig. 10c), and UltraCOV 
(Fig. 10d) images exhibit greater clarity and detail, allow-
ing for better visualization of artifacts and other rel-
evant features. The confusion matrices (Figs.  6 and 7), 
combined with the visual differences apparent in Fig. 10, 
strongly suggest that these variations in image character-
istics significantly impacted the models’ ability to gener-
alize, particularly on the CerberoATL images.

In addition to the inherent differences between scan-
ners, variations in acquisition technique also likely con-
tributed to the observed performance differences. Factors 
such as probe movement and positioning, applied pres-
sure, gain settings, and the use of pre-set imaging filters 

can all significantly affect image quality and the visibil-
ity of key LUS artifacts. While techniques like data aug-
mentation and domain adaptation can help to mitigate 
the effects of data heterogeneity [32, 33], our findings 
suggest a complementary, and potentially more funda-
mental, approach: standardizing the image acquisition 
process itself. The superior performance on Dataset-2, 
achieved by both CM and SM despite their different 
training paradigms, suggest that a consistent acquisition 
protocol can reduce variability in image characteristics 
to the point where even models trained under different 
conditions can achieve higher accuracy and agreement. 
This raises the important question of whether future AI 
model development for LUS should prioritize training 
on diverse datasets from multiple scanners (to capture 
a wider range of variability) or on highly standardized 
datasets from a single or a few well-defined scanner/
protocol combinations (to maximize consistency). Our 
results, suggest that a combination of both approaches, 
standardized acquisition and diverse training data, may 
be optimal. This is an important area for future research.

A closer inspection of the per-scanner results provides 
a key insight into the models’ generalization capabilities. 
The performance of the CM model, particularly its fail-
ure on the Philips IU22 scanner (Fig.  6), can be attrib-
uted to its sensitivity to image geometry. The CM was 
trained on cropped sectorial images, making it suscepti-
ble to variations in aspect ratio, which are notably differ-
ent in the Philips images with their greater depth range. 
In contrast, the SM model’s robustness to variations in 
sector width stems from its pre-processing pipeline. As 
detailed in our Methods (Sect.  2.2.2), the conversion of 
all input images to a standardized rectangular B-scan for-
mat (illustrated in Fig. 3) effectively decouples the model 
from scanner-specific geometric properties. This geo-
metric normalization is likely a critical factor in its ability 
to generalize. However, this approach is not without its 
own limitations; the SM’s performance can be compro-
mised when processing images from Dataset-1 that have 
been cropped in depth, as this alters the aspect ratio of 
the resulting B-scan.

Furthermore, within the Dataset-2, a closer exami-
nation of the performance curves for longitudinal and 

Fig. 10  Comparison of LUS image quality across different ultrasound scanners
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transversal acquisitions (Fig. 5a and b) reveals a striking 
similarity in the trends observed for both CM and SM 
methods. Regardless of the method, accuracy changes in 
a near-parallel pattern as the threshold is varied for both 
longitudinal and transversal acquisitions. This suggests 
that, while the optimal threshold may differ slightly, the 
underlying relationship between the strength of the AI’s 
prediction (at the frame level) and the overall video-level 
severity score is relatively consistent across these two 
acquisition views. This consistency suggests that AI mod-
els can learn to exploit these features regardless of the 
specific probe orientation, provided that the image qual-
ity is sufficient and consistent.

The agreement between the CM and SM methods 
also revealed interesting patterns. While video-level 
agreement was higher on Dataset-1 (Kqwc = 0.61) than 
Dataset-2 (Kqwc = 0.52), prognostic-level agreement 
was substantial for both datasets (Kqwc = 0.64 and 0.60, 
respectively). This comparable inter-model agreement to 
the model-clinician agreement, particularly at the prog-
nostic level, suggests that both models, despite their 
architectural differences, are capturing clinically rele-
vant information. This opens the possibility of exploring 
ensemble methods, combining CM and SM, to poten-
tially achieve greater robustness. This hypothesis was 
explored with promising results in AI-assisted CT diag-
nosis for COVID-19 patients in [34].

A key methodological choice in this study was the 
selection of the 1% threshold to translate frame-level 
predictions into a definitive video-level score. As shown 
in our results, this low threshold provided a good bal-
ance between performance at the video-level and the 
more clinically relevant examination and prognostic 
levels. This approach also ensures consistency with pre-
vious research [20] and is based on the clinical prin-
ciple of focusing on the most severe findings within an 
ultrasound scan. However, we acknowledge this fixed 
threshold warrants further investigation. It may not be 
optimal for all videos, given the observed variability in 
image quality across scanners, and even within the same 
scanner (as suggested by the performance fluctuations in 
Figs. 4 and 5). A fixed, low threshold could increase sen-
sitivity to noise or artifacts. Therefore, exploring adaptive 
thresholding techniques, which dynamically adjust the 
threshold based on image characteristics (e.g., signal-to-
noise ratio) could potentially improve the robustness and 
accuracy of the models.

Our study has several limitations. While our sample 
sizes were sufficient for this initial investigation, larger 
datasets would be beneficial for future validation, espe-
cially to increase the statistical power of comparisons 
between scanners. The retrospective nature of the study 
is another limitation. Because we used pre-existing 
data, we could not control for potential selection bias 

in the patient population or ensure standardized LUS 
acquisition protocols across all patients and scanners 
(as highlighted by the differences between Dataset-1 
and Dataset-2). This limits our ability to control for 
confounding sources, such as systematic differences in 
patient demographics (age, gender) or clinical charac-
teristics (disease stage) between the datasets, and extract 
causal conclusions about the relationship between LUS 
findings and patient outcomes. While this data was avail-
able, a detailed cohort analysis was considered beyond 
the primary scope of this study, which focuses on the 
technical comparison of the AI models. Nevertheless, we 
acknowledge this as a limitation and an important ave-
nue for future research. Furthermore, a key limitation of 
Dataset-2 is the limited number of healthy control exam-
inations (total score 0). As the data acquisition focused 
on hospitalized COVID-19 patients, only three exami-
nations were categorized as ‘healthy’. This small number 
of healthy controls makes it difficult to draw definitive 
conclusions about the method’s ability to accurately clas-
sify it at prognostic-level on Dataset-2, and may partially 
explain the observed performance differences between 
the CM and SM methods in classifying this specific cat-
egory. Extending the study to include a larger and more 
representative sample of healthy individuals would be 
valuable for future research. Moreover, extending the 
study beyond COVID-19 to include patients with other 
pulmonary pathologies would also be valuable to assess 
the generalizability of the models. A potential strategy for 
this would be to use transfer learning to adapt the cur-
rent models to new datasets containing pathologies such 
as bacterial pneumonia or acute heart failure. Addition-
ally, while we used expert annotations as the ground 
truth, incorporating the consensus of multiple clinicians 
would further mitigate the inherent subjectivity of LUS 
interpretation.

Furthermore, a limitation related to the ground truth 
ambiguity is revealed by the per-class performance met-
rics (see Appendix Table A1). One of the most frequent 
sources of misclassification for both models occurred 
not only between Score 0 and Score 1, but also between 
Score 1 and Score 2. This finding should be interpreted 
not solely as an algorithmic limitation, but also in the 
context of real-world clinical challenges. The sonographic 
distinction between scores represents a gradual progres-
sion. Establishing a clear threshold is notoriously sub-
jective and a well-documented source of inter-observer 
variability among expert clinicians [7, 8]. Therefore, the 
models’ difficulty in distinguishing these adjacent classes 
likely reflects the inherent ambiguity of the ground truth 
labels themselves, suggesting that the models are learning 
patterns consistent with human clinical interpretation 
challenges.
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Another significant limitation to consider is that the 
SM method was trained on images from 27 of the 30 
patients within Dataset-2. Consequently, this raises the 
possibility of data leakage affecting the method’s results 
on this dataset. While this constitutes a methodological 
limitation, these results are presented to ensure a com-
prehensive study that includes all possible model and 
dataset combinations.

Despite these limitations, the high prognostic-level 
agreement, suggests the potential clinical utility of AI-
assisted LUS for risk categorization in pneumonia caused 
by COVID-19 infection and potentially in other respira-
tory diseases. This could possible improve resource allo-
cation and patient management, increasing the number 
of physicians performing LUS ultrasound, and reducing 
inter-observer variability.

Future work should involve larger, prospective, multi-
center studies with diverse patient populations and scan-
ners. Investigating ensemble methods combining CM 
and SM (Fig.  11), and exploring techniques to improve 
model robustness to scanner variability, and promoting 
the standardization of LUS image acquisition protocols, 
are crucial.

Conclusions
This study compared two distinct deep learning 
approaches, a pre-trained classification model (CM) 
and a segmentation model (SM) method, for automated 

lung ultrasound (LUS) severity assessment in patients 
with pulmonary infections caused by COVID-19, using 
datasets that reflect both multi-scanner and standard-
ized single-scanner scenarios. It was demonstrated that 
AI-driven analysis of LUS has significant potential for 
evaluating patient risk in this context, with both models 
achieving accuracies over 76% comparing with expert 
clinicians in determining patient severity at the prog-
nostic level (Table IV). It was also demonstrated that 
a segmentation model, originally designed for artifact 
identification, could be effectively repurposed for sever-
ity scoring, achieving a level of agreement comparable to 
that of a dedicated, pre-trained classification model. At 
the video level, while agreement with clinicians varied 
across datasets and models, the use of a 1% threshold on 
frame-level predictions proved to be a practical approach 
for generating video-level scores. Furthermore, the exam-
ination-level analysis highlighted that the majority of 
examinations across both models and datasets showed 
an acceptable level of error, providing further support for 
the feasibility of AI-assisted LUS interpretation.

Beyond demonstrating the potential for AI-powered 
LUS analysis, our study also revealed a critical factor 
influencing model performance, particularly at the prog-
nostic level: the variability in image acquisition. The sig-
nificantly improved results on Dataset-2, acquired with 
a single scanner and a standardized protocol, compared 
to the multi-scanner Dataset-1, suggest that consistent 

Fig. 11  Sample of possible future implementation combining segmentation with classification on LUS: marking Pleura (blue), A-lines (green), vertical 
artifacts (orange), consolidations (red) and the respective predicted score. Images from Dataset-1 applying SM and CM methods
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image quality, achieved through standardization, is a 
key determinant of reliable AI-driven prognostic assess-
ments. This has direct implications for the successful 
clinical implementation of AI-assisted LUS, emphasizing 
the need for standardized examination protocols.

In conclusion, this research provides strong evidence 
for the clinical utility of AI-powered LUS analysis, par-
ticularly for prognostic assessment, while simultaneously 
highlighting the importance of data quality and standard-
ization for achieving reliable and generalizable results. 
The similar performance between the segmentation-
based method and the pre-trained classification model 
highlights the ability of both approaches to generalize 
effectively to patients and scanners excluded from the 
training phase. The successful completion of this study, 
involving the analysis of multi-center data from diverse 
clinical settings, underscores the crucial role of interna-
tional and multidisciplinary collaborations in advancing 
the field of AI for LUS. Such collaborations are essential 
not only for accessing diverse datasets, but also for pro-
moting the exchange of expertise necessary to develop 
and validate AI methods that can truly benefit patients, 
contributing to earlier and more accurate diagnoses.

Appendix 1
See Table 7.
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