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B-mode ultrasound and contrast-enhanced
ultrasound-based radiomics interpretable
analysis for the prediction of macrotrabecular-
massive subtype of hepatocellular carcinoma
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Abstract

Background This study aimed to develop and validate an interpretable radiomics model using quantitative features
from B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) for predicting macrotrabecular-massive
(MTM) hepatocellular carcinoma (HCC).

Methods From October 2020 to September 2023, 344 patients (mean age: 58.20+ 10.70 years; 275 men) with
surgically resected HCC were retrospectively enrolled from three medical centers. Radiomics features were extracted
from BMUS and CEUS, followed by a multiple-step feature selection process. BMUSg model (based on BMUS radiomics
features), BM+CEUS; model (based on BMUS and CEUS radiomics features) and hybridg,- model (integrated clinical
indicators and radiomic features) were established. These radiomics models’ performance was compared with
conventional clinic-radiological (Cc, ) model using area under the receiver operating characteristic curve (AUC).
SHapley Additive exPlanations (SHAP) method was used to interpret model performance. The model’s potential for
predicting recurrence-free survival (RFS) was further analyzed.

Results Among ten distinct machine learning classifiers evaluated, the AdaBoost algorithm demonstrated the
highest classification performance. The AUCs of the BM +CEUS; model for identifying MTM-HCC were higher than
the BMUS; model and the conventional clinic-radiological model in both validation (0.880 vs. 0.720 and 0.658, both
p<0.05) and test sets (0.878 vs. 0.605 and 0.594, both p < 0.05). No statistical differences were observed between the
BM +CEUS; model and the hybridg, - model in either set (p>0.05). Additionally, the AdaBoost-based BM +CEUS,
model showed promising in stratifying early recurrence-free survival, with p <0.001.
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Conclusion The AdaBoost-based BM +CEUS; model shows promise as a tool for preoperatively identifying MTM-HCC

and may also be beneficial in predicting prognosis.

Keywords Macrotrabecular-massive hepatocellular carcinoma, Contrast enhanced ultrasound, Radiomics, SHapley

additive explanations, Prognosis

Background

Even with recent advancements in the treatment of hepa-
tocellular carcinoma (HCC), high recurrence rates and
poor prognosis continue to be pressing concerns [1].
Different HCC subtypes exhibit significant heteroge-
neity in clinical presentation, radiology findings, H&E
morphology, molecular studies, and outcomes [2, 3].
Understanding and characterizing heterogeneity across
HCC subtypes is critically important, as it fundamentally
informs core dimensions of patient management—span-
ning diagnostic decision-making, therapeutic strategy
formulation, and prognostic evaluation. However, cur-
rent noninvasive diagnostic methods are still unable to
classify hepatocellular carcinoma preoperatively, thus
hindering the implementation of precise treatments.

The macrotrabecular-massive (MTM) subtype, rec-
ognized by the WHO in 2019, is characterized by a pre-
dominantly (>50%) macrotrabecular growth pattern,
accompanied by satellite lesions and vascular invasion,
contributing to its highly aggressive nature and poor
prognosis in HCC [4, 5]. Research indicates that this sub-
type serves as a significant predictor of both overall and
early recurrence following surgical resection or radiofre-
quency ablation [6, 7]. Efforts have been devoted to pre-
operative prediction of MTM-HCC by imaging methods.
Several imaging features have been identified to be asso-
ciated with MTM-HCC, such as larger size [8], intratu-
mor necrosis [9-11], hypo-enhancing components in the
arterial phase (AP) [12], and a high frequency of tumor
presence in veins [13]. However, evaluating imaging
characteristics is prone to interobserver variability, which
can lead to discrepancies among radiologists.

Radiomics transforms medical images into mineable
high-dimensional datasets by computationally extract-
ing subvisual quantitative features—including morpho-
logical, intensity-based, and textural signatures beyond
human perceptual limits [14, 15]. Radiomics has dem-
onstrated potential as a quantitative tool for predict-
ing tumor characteristics that are challenging to visually
identify or quantify, such as tumor grading and lesion
heterogeneity [16-18]. Promising results have been
achieved in using radiomics method to distinguish MTM
from non-MTM-HCC based on CT and MRI scans [12].
By leveraging its ability to process quantitative image
information, machine learning (ML)-based computa-
tional approaches have been introduced to enhance the
diagnostic accuracy of disease prediction [19]. How-
ever, the limited interpretability inherent in ML-based

approaches has constrained the clinical translation of
radiomics research findings.

As far as we know, the application of ML radiomics
to B-mode ultrasound (BMUS) and contrast-enhanced
ultrasound (CEUS) for MTM-HCC prediction has not
been previously reported. The objective of this research
was to evaluate the diagnostic performance of interpre-
table ML-based radiomics applied to BMUS and CEUS
for detecting MTM-HCC, using postoperative histopa-
thology as the gold standard. In addition, the study aimed
to further address model interpretability by linking
radiomic features to tumor pathology findings.

Methods

This multi-institutional study was approved by the eth-
ics committee of the institution (No: 2024-203R), and
informed consent was obtained.

Study patients

Data of HCC patients who underwent preoperative
B-mode US (BMUS) and CEUS examinations were retro-
spectively collected at Zhongshan Hospital, Fudan Uni-
versity from July 2022 to July 2023. The inclusion criteria
comprised: (a) histopathological confirmation of HCC
following surgical resection and (b) preoperative CEUS
performed within a 2-week timeframe. The exclusion cri-
teria were as follows: (a) HCC with incomplete clinical
information or unclear pathology; (b) previously treated
lesions; (c) lesion size too large to be fully displayed in a
single US image; (d) poor-quality US data such as incom-
plete clips for AP, portal venous phase (PVP), or delayed
phase (DP); or the lesion could not be recognized on
B-mode US. Finally, a total of 255 patients were enrolled
in our study following the application of these criteria
(Fig. 1).

An external validation set comprising 89 HCC patients
was established at two participating institutions (Sun Yat-
sen University Cancer Center and Shanghai Tenth Peo-
ple’s Hospital) using the same enrollment criteria applied
to the development cohort, with data collected from
October 2020 through September 2023.

The electronic medical record system was utilized to
record the following clinical indicators: age, sex, infec-
tious status of Hepatitis B virus (HBV) or Hepatitis C
virus (HCV), Alpha-Fetoprotein (AFP) level, Albumin
(ALB) level, Aspartate Aminotransferase (AST) level,
MTM subtype, and postoperative recurrence data. To
determine the MTM subtype, pathology slides of the
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Fig. 1 Flowchart of patient selection in this study. CEUS, contrast-enhanced ultrasound; HCC, hepatocellular carcinoma

tumor specimens were reviewed by an abdominal pathol-
ogist. The MTM subtype is characterized by a predomi-
nant (>50%) architectural pattern (cords of tumor cells
thicker than 8 cells) observed upon hematoxylin-eosin
staining.

BMUS and CEUS protocol

All BMUS and CEUS acquisitions were conducted by
three board-certified radiologists (each with >10 years of
experience) using standardized ultrasound systems: Sam-
sung RS80A with CA1-7 A transducer (1.0-7.0 MHz),
Acuson Sequoia with 5C1 transducer (2.0-5.0 MHz), or
GE LOGIQ E9 with C1-5-D transducer (1.0-5.0 MHz)
(Supplementary Table 1).

In cases of multiple hepatic tumors, the largest lesion
(by diameter) was chosen as the target for assessment.
Prior to CEUS examination, BMUS and color Doppler
US were initially performed to localize the target lesion.
Real-time CEUS imaging was performed on the larg-
est section of the targeted lesion. Dual-screen enabled
to simultaneously display the BMUS and CEUS images,
with the timer documenting three phases features of
CEUS following contrast agent administration. Each
patient received either 2.0 mL of SonoVue (Bracco) or 0.6
mL of Sonazoid (GE Healthcare) via manual bolus injec-
tion, immediately followed by a 5 mL saline flush (0.9%
NaCl). Timer activation was synchronized precisely with
contrast bolus injection. The lesion was observed con-
tinuously for at least 120 s, and then scanned at 20-30 s
intervals and recorded for 5 min or until the microbub-
bles disappeared. The installed contrast specific imaging
mode was coded phase inversion (CPI) with a frame rate
of 15-20 fps. CPI is based on pulse inversion harmonic
imaging and can enable effective tissue cancellation and

avoid destruction of microbubbles in the circulation. All
dynamic CEUS cine loops were stored in DICOM format
for offline evaluation. Three phases were AP (10-45 s
after post-injection), PVP (45-120 s), and DP (121-
300 s), respectively.

Clinic-radiological predictor selection and construction for
the conventional clinic-radiological model

Two board-certified radiologists (each with >3 years of
specialized experience in hepatic CEUS) independently
reviewed all B-mode ultrasonography and contrast-
enhanced cine loops. The readers were blinded to all clin-
ical and pathological data except for the confirmed HCC
diagnosis. Any interpretive discrepancies were resolved
through consensus discussion between the two radi-
ologists. The following sonographic characteristics were
evaluated: a) liver background (cirrhosis/non-cirrhosis);
(b) tumor largest diameter; (c) tumor boundary (clear/
obscure); (d) halo sign; (e) AP enhancement pattern
(homogeneous/heterogeneous); (f) intralesional necro-
sis (defined as non-enhancing regions persisting dur-
ing entire CEUS process); (g) PVP enhancement pattern
(washout/non-washout).

Univariable and multivariable regression analysis was
performed on clinical indicators extracted from the
institutional electronic medical record system and radi-
ologist interpreted imaging features. The conventional
clinic-radiological (C,) model was developed through
multivariable logistic regression analysis, incorporating
statistically significant independent predictors identified
during model construction. (Fig. 2).
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Fig. 2 Study workflow of the conventional clinic-radiological model, US radiomics model, and hybrid model

BMUS and CEUS image segmentation and radiomics
features selection
Images of each lesion confirmed by two radiologists (with
7 and 8 years of experience in abdominal US, respec-
tively) who were blinded to the clinicopathologic data in
consensus (including 4 US images from BMUS, AP, PVP
and DP of CEUS) were used for radiomics analysis. The
selection criteria for the three key CEUS images were as
follows: for AP, the image showing peak lesion enhance-
ment was selected; for PVD, the image capturing washout
(if present) was chosen, otherwise, one image between 90
and 120 s was selected; and for DP, due to intermittent
scanning, one image between 180 and 300 s was included.
One radiologist, with three years of experience in
abdominal US, manually delineated tumor boundar-
ies by contouring regions of interest (ROIs) using ITK-
SNAP software (version 3.6.0; www.itksnap.org). 1070
radiomics features were extracted for each ROI (a total
of 4280 features from each patient), using the IFoundry

software (Intelligence Foundry 1.2, GE Healthcare) (Sup-
plementary Material S2).

In addition, the same radiologist performed dupli-
cate ROI delineations on 30 randomly selected cases
with a 7-day interval between measurements, allowing
assessment of segmentation consistency while control-
ling recall bias. To assess inter-observer variability, an
additional radiologist (4 years of specialized US expe-
rience) independently contoured ROIs on the same
image set, enabling comparative analysis of segmenta-
tion consistency between operators. Interclass correla-
tion coefficient (ICC) was used to evaluate the intra- and
inter-operator agreement of feature extraction. An
ICC>0.80 was considered excellent.

Radiomics feature selection was performed through a
multi-step approach: (1) ICC analysis retaining features
with excellent reproducibility (ICC>0.8); (2) indepen-
dent samples t-test identifying features with significant
discriminative power (p <0.05); (3) Spearman’s rank cor-
relation eliminating redundant features (r>0.8); and (4)
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LASSO regression with 10-fold cross-validation for final
feature selection.

Construction and validation of the ML-based radiomics
models

Ten distinct machine learning algorithms were employed
to develop predictive models (Supplementary Material
S3) [20]. Selected radiomics features and clinical indi-
cators served as inputs for training different radiomics
models. Model optimization was performed via five-fold
cross-validation, with subsequent performance evalu-
ation based on the area under the receiver operating
characteristic curve (AUC). The algorithm demonstrat-
ing superior discriminative ability (highest AUC) in the
validation cohort was selected as the optimal radiomics
model.

Three type radiomics models were constructed as fol-
lows: the ML-based BMUS; model based on BMUS
radiomics features; the ML-based BM + CEUS; model
based on BMUS and CEUS radiomics features; and the
ML-based hybridy, - model based on BMUS and CEUS
radiomics features together with clinical indicators
(Fig. 2).

Interpretability of the optimal ML model’s performance
ML-based models have interpretability issues because
they work like a “black box”. In this study, the SHAP algo-
rithm was employed to explain the prediction results of
the best-performing model using Python open-source
SHAP package. SHAP algorithm is based on the Shap-
ley value theory, decomposing the prediction results into
the impact of each feature, providing interpretability for
the model [21-23]. The summary plot provides insights
into both feature importance and feature effects. Each
point on the plot corresponds to a SHAP value for a spe-
cific feature and instance. It illustrates the relationship
between feature values and their influence on the diagno-
sis. The heatmap reflects the specific impact of each fea-
ture on each sample.

The relationship between the MTM subtype and
postoperative recurrence

The primary outcome measure was recurrence-free sur-
vival (RFS), calculated from the date of curative resection
to the first documented event of tumor recurrence (either
intrahepatic or extrahepatic) or mortality. Intrahepatic
recurrence was characterized by the emergence of new
tumors within the liver. Patients were followed until
recurrence, death, or the end date of this study. Follow-up
data was gathered and reviewed from patients’ medical
records. Comprehensive follow-up data were obtained
through systematic medical record review supplemented
by structured telephone interviews for patients lost to
clinical follow-up.
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Statistical analysis

All statistical analyses were conducted using Python 3.8.8
and SPSS Statistics 22.0. Normally distributed continu-
ous variables were expressed as mean *standard devia-
tion and compared using independent samples t-tests.
Categorical variables were presented as frequencies
and analyzed with Pearson’s chi-square test. Diagnos-
tic accuracy was assessed by calculating the area under
the receiver operating characteristic curve (AUC) with
95% confidence intervals. Univariate and multivariate
analyses were performed to select the clinical indicators.
DeLong’s test was used to assess differences between
AUGCs. The RFS rates were calculated using the Kaplan-
Meier estimator, with between-group comparisons per-
formed via log-rank testing. A p-value of less than 0.05
was considered statistically significant.

Result

Baseline characteristics

Eventually, a total of 255 HCC patients (202 men and
53 women) fulfilled eligibility criteria were included for
model construction. They were randomly assigned to the
training and validation sets in an 8-to-2 ratio. 65 HCC
patients from center 1 and 24 HCC patients from center
2, respectively, constituted the test set. The clinic-radio-
logical characteristics of patients in the training, inter-
nal validation, and external test sets are summarized in
Table 1.

Construction and validation of the C,; model and the
ML-based US radiomics models

After univariate and multivariate logistic regression anal-
ysis, the cirrhosis, PVP hypo-enhancement, elevated AFP
level (>40 ng/mL), and lowered albumin level (<29 g/L)
were decided as independent risk factors of MTM-HCC
in the training set (all p<0.05) (Table 2). CEUS and his-
topathological images of a representative MTM-HCC
case (Fig. 3). For the prediction of MTM-HCC, the C,
model achieved an AUC of 0.658, a sensitivity of 72.2%, a
specificity of 54.5%, a PPV of 46.4%, a NPV of 78.3%, and
an accuracy of 60.8% in the validation set (Table 4).

The feature selection process employed a multi-step
approach: after ICC analysis, features were reduced from
4,280 to 3,437; following t-test, features decreased to
914; after Spearman’s rank correlation, features were fur-
ther reduced to 666; and finally, LASSO regression nar-
rowed features down to 47. These 47 radiomics features
included 11 radiomics features from BMUS, 11 radiomics
features from AP of CEUS, 11 radiomics features from
PVP of CEUS, and 14 radiomics features from DP of
CEUS (Supplementary Fig. 4 and Supplementary Table
5).

For the BMUS; model, the AdaBoost classifier with the
selected 11 radiomics features showed the highest AUC
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Table 1 The clinic-radiological characteristics of HCC patients in
the training set, internal validation set, and external test set

Character-  Total Training set Validation Test set
istics set

No. of 344 204 51 89
patients

Sex

Female 69 (20.06) 43(21.08) 10 (19.61) 16 (17.98)
Male 275(79.94)  161(7892)  41(80.39) 73(82.02)
Meanage, 5820+10.70 5879+10.16 59.90+11.02 55.88+11.46
year

(range)* (25,87) (25,87) (29, 79) (26,77)
MTM 103(29.94) 71 (34.80) 15(29.41) 17 (19.10)
subtype

HBV/HCV 208 (86.63) 176(86.24)  43(84.31) 79 (88.76)
history

AFP

<40ng/mL  206(59.88) 119(5833) 31 (60.78) 56 (62.92)
>40ng/mL  138(40.12)  85(41.67) 20(39.22) 33 (37.08)
ALB

<29g/L 16 (4.65) 9(4.41) 4(7.84) 3(3.37)
>29g/L 328(95.35) 195 (95.59) 47 (92.16) 86 (96.63)
Mean tumor  4.24+243 4.00£2.69 3.98+2.25 493+1.70
size,cm

(range)* (0.8,13) (0.8,13) (1,11) (1,109
Cirrhosis 146 (42.44) 96 (47.06) 19 (37.25) 31(34.83)
Margin

Clear 67 (19.48) 41 (20.00) 10(19.61) 16 (17.98)
Obscure 277 (80.52) 163 (80.00) 41 (80.39) 73(82.02)
Halo sign 61(17.73) 38(18.63) 9(17.65) 14 (15.73)
AP hetero-  283(82.27)  74(36.27) 18 (35.29) 32(35.96)
geneous

enhance-

ment

PVP hypo- 114 (33.14) 69 (33.82) 17 (33.33) 28 (31.46)
enhance-

ment

Necrosis 36 (1047) 27 (13.24) 3(5.88) 6 (6.74)

Data in parentheses are percentages except for special indications

MTM, macrotrabecular-massive; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus;
AFP, Alpha-fetoprotein; ALB, Albumin; AP, arterial phase; PVP, portal venous
phase

*Data are presented as the meanztstandard deviation, with ranges in
parentheses

of 0.720 compared with other 9 ML classifiers (AUC:
0.554—0.712) in the validation set for discriminating
between MTM and non-MTM HCC lesions. The sensi-
tivity, specificity, PPV, NPV, and accuracy of the model
were 58.8%, 88.2%, 71.4%, 81.1%, and 78.4%, respectively
(Tables 3 and 4).

For the BM + CEUS; model, the AdaBoost algorithm
with the selected 47 radiomics features showed the high-
est AUC of 0.880 in comparison to other 9 ML algorithms
(AUC: 0.614—-0.836) in the validation set for discriminat-
ing between MTM and non-MTM HCC lesions. The
training curve of BM + CEUSy model was shown in Sup-
plementary Fig. 6. The sensitivity, specificity, PPV, NPV,
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Table 2 The univariate and multivariate logistic regression
analysis in clinic-radiological features for the prediction of MTM-
HCC

Characteristics Univariate analysis Multivariate
analysis
OR (95% Cl) pvalue OR(95%Cl) p
value

HBV/HCV history

Absence vs. 0.615 0.235 / /

presence (0.275,1.373)

AFP

<40vs.>40ng/mL  0.374(0.219, <0001 0433(0.246, 0.004
0.638) 0.761)

ALB

>29vs.<29g/L 0.137(0.037, 0.003 0.147 (0.037,  0.006
0.513) 0.579)

Tumor size 1.154 (1.043, 0.005 1.083 (0952, 0227
1.276) 1.233)

Cirrhosis

Absence vs. 0.585 (0.285, 0.007 0492 (0.279, 0.015

presence 0.824) 0.871)

Margin

Clear vs. obscure 0.541 (0.267, 0.088 / /
1.096)

Halo sign

Absence vs. 0.783 (0.406, 0.464 / /

presence 1.507)

AP enhancement

pattern

Homogeneousvs. 0474 (0.278, 0.006 0.742(0.380, 0382

heterogeneous 0.811) 1.449)

PVP

hypo-enhancement

Absence vs. 0430 (0.238, 0.006 0455 (0.244, 0.014

presence 0.783) 0.851)

Necrosis

Absence vs. 0.263 (0.118, 0.001 0464 (0.173, 0127

presence 0.587) 1.243)

HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; AFP, Alpha-fetoprotein; ALB,
Albumin; AP, arterial phase; PVP, portal venous phase

and accuracy of the model were 77.8%, 90.9%, 82.4%,
88.2%, and 86.3%, respectively (Tables 3 and 4).

For the hybridy,. model, the AdaBoost algorithm
with 47 radiomic features and two laboratory features
showed the highest AUC of 0.914 compared with other 9
ML algorithms (AUC: 0.653—0.841) in the validation set
for discriminating between MTM and non-MTM HCC
lesions. The sensitivity, specificity, PPV, NPV, and accu-
racy of the model were 80.0%, 100%, 100%, 89.7%, and
92.7%, respectively (Tables 3 and 4).

Comparison between the C.,; model and three types of
radiomics models

The diagnostic results of the C,; model and three types
of radiomics models in internal validation and external
test sets were shown in Table 3; Fig. 4.
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Fig. 3 A case of MTM-HCC in a 57-year-old male participant with hepatitis B virus—related cirrhosis. a—e Images from preoperative CEUS demonstrate
an 9.4-cm HCC in the left anterior lobe of the liver; the lesion is marked by white arrowheads. a The lesion exhibited an ill-defined margin with hetero-
geneous echotexture. b, ¢ A visible intratumoral artery (red arrow) and hypoenhancing component (green arrow) during the arterial phase. d Early
heterogeneous washout was observed at 55 s. e Delayed phase image showed marked washout extending beyond the margins of the B-mode lesion. f
Photomicrograph reveals a macrotrabecular pattern. (Hematoxylin-eosin stain)

Table 3 The AUC results of ten ML algorithms for the BMUSg, BM 4+ CEUS; and hybridg, - models

ML algorithms BMUS, BM +CEUS, Hybridg,
AUC (95% Cl) p value AUC (95% Cl) p value AUC (95% Cl) p value

AdaBoost 0.720 (0.554,0.885) / 0.880 / 0914 /
(0.820, 0.935) (0.813, 1.000)

Gradient boosting 0.704 (0.542,0.865) 0.865 0.794 0.113 0.808 0.190
(0.632,0.937) (0.687,0.929)

XGBoost 0.680 (0.508,0.802) 0.709 0.836 0.212 0.841 0.348
(0.671,0.955) (0.721,0.955)

Bagging 0.649 (0.488,0.811) 0.649 0.767 0.166 0814 0.252
(0.528, 0.960) (0.678,0.951)

Decision tree 0.554 (0.389,0.720) 0.127 0614 <0.001 0.678 0.007
(0464,0.761) (0.545,0.812)

Extra trees 0.712 (0.555,0.869) 0.903 0.666 0.007 0.775 0.127
(0.487,0.830) (0.629, 0.920)

Logistics regression 0.616 (0.449,0.784) 0.381 0.666 0.003 0.733 0.041
(0.498,0.819) (0.596,0.871)

Naive Bayes 0.701 (0.541,0.860) 0.828 0.783 0.362 0.733 0.052
(0.652,0.914) (0.596,0.871)

Random forest 0.607 (0.436,0.779) 0.338 0.790 0.173 0.721 0.052
(0.637,0915) (0.555,0.875)

K-nearest neighbour 0.563 (0.322,0.803) 0.286 0.621 <0.001 0.653 0.005

(0462, 0.789)

(0.505, 0.800)

Cc,gr model, based on clinic-radiological characteristics; BMUS; model, based on B-mode US radiomics features; BM+CEUS, model, based on B-mode US and CEUS
radiomics features; Hybrid., s model, based on clinical features and B-mode US and CEUS radiomics features;

ML, machine learning. AUC, area under the curve. Cl, confidence interval
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Table 4 The diagnostic performance of various models in discrimination MTM from non-MTM ones

Models AUC SEN SPE PPV NPV ACC p value*

Cec,g model

Validation set 0.658 72.2 545 464 783 60.8 0.029
(0.499,0.817) (51.5,92.9) (37.6,71.5) (28.0,64.9) (61.4,95.1) (59.9,61.7)

Test set 0.594 64.7 500 234 0.857 0.528 0.005
(0.449, 0.740) (42.0,874) (385,61.5) (11.3,355) (75.1,96.3) (52.3,534)

BMUSg model

Validation set 0.720 588 88.2 714 81.1 784 0.121
(0.554,0.885) (354,82.2) (77.4,99.1) (47.8,95.1) (68.5,93.7) (77.8,79.1)

Test set 0.605 88.2 43.1 26.8 939 51.7 0.012
(0.478,0.731) (72.9,100) (31.6,54.5) (15.2,384) (85.8,102) (51.1,52.2)

BM+CEUSg; model

Validation set 0.880 778 90.9 824 88.2 86.3 /
(0.766, 0.995) (58.6,97.0) (81.1,100) (64.2,100) (77.4,99.1) (85.8,86.7)

Test set 0.878 824 889 63.6 95.5 87.6 /
(0.769,0.987) (64.2,100) (81.6,96.1) (43.5,83.7) (90.6, 100) (87.4,87.9)

Hybridg,c model

Validation set 0914 80.0 100 100 89.7 92.7 0.574
(0.813, 1.00) (62.5,97.5) (100, 100) (100, 100) (80.2,99.3) (92.5,93.0)

Test set 0.892 824 93.1 73.7 95.7 91.0 0.112
(0.776, 1.00) (64.2,100) (87.2,98.9) (53.9,93.5) (91.0, 100) (90.8,91.2)

Data in parentheses are 95% confidence interval

Cc,.r model, based on clinic-radiological characteristics; BMUS; model, based on B-mode US radiomics features; BM + CEUS; model, based on B-mode US and CEUS
radiomics features; hybridg, - model, based on clinical features and B-mode US and CEUS radiomics features;

SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve. * P value of AUCs differ from BM+CEUSg
model
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Fig. 4 Receiver operating characteristic (ROC) curves of the C model, BMUSz model, BM +CEUS; model, and hybridg, - model in the internal validation
(a) and external test (b) sets. The conventional clinic-radiological (Cc,5) model, based on clinic-radiological characteristics; The BMUS; model, based on
B-mode US radiomics features; The BM+CEUS; model, based on B-mode and CEUS radiomics features; The hybridg, - model, based on CEUS radiomics
features and clinic-radiological features

The AdaBoost-based BMUS; model showed a simi-
lar performance compared to that of the C,; model in
terms of AUCs (0.720 vs. 0.658 and 0.605 vs. 0.594, both
p>0.05) in the internal validation and external test set,
respectively.

The AdaBoost-based BM+CEUS; model showed a
better performance compared to that of the C,; model
in terms of AUCs (0.880 vs. 0.658 and 0.878 vs. 0.594,

both p<0.05) in the internal validation and external test
set, respectively. In comparison of the AdaBoost-based
BM +CEUS; model and the AdaBoost-based BMUS;
model, no statistical difference was found between the
two models in terms of AUCs (0.880 vs. 0.720, p >0.05) in
the internal validation set. However, in the external test
set AdaBoost-based BM + CEUS; model demonstrated
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superior performance compared to the AdaBoost-based
BMUS; model in terms of AUCs (0.878 vs.0.605, p < 0.05).

No statistical difference was found between the Ada-
Boost-based hybridy,- model and the AdaBoost-based
BM + CEUSy model in the internal validation and exter-
nal test set (0.914 vs. 0.880 and 0.892 vs. 0.878, both
p>0.05).
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The ML-based model interpretation

SHAP values represent the impact of each feature on the
final prediction, providing a clear and effective expla-
nation of model predictions for individual patients.
The SHAP beeswarm plot showed the top 20 crucial
radiomics features in BM + CUES; model (Fig. 5a). The
blue and red dots indicate whether a factor decreased

(blue) or increased (red) the risk of MTM subtype.
The SHAP heatmap illustrates the impact of the top 9
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Fig. 5 SHAP interpretation of the BM +CEUS; model. a The top 20 radiomics features ranked by importance, evaluated with stability and interpretability
using the CEUSg model. The higher SHAP value of a feature is given, the higher risk of MTM-HCC would be. The red section in the feature value indicates
a higher value. b The heatmap reflects the specific impact of a single feature on each sample in the external test set. AP arterial phase, DP delayed phase,
PVP portal venous phase, B b-mode
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Fig. 6 The recurrence-free survival rates in actual non-MTM patients and MTM patients a and BM + CEUSg model predicted non-MTM patients and MTM

patients b in center 1

radiomics features on each individual case in the exter-
nal set, with darker colors indicating a greater impact
(Fig. 5b).

The relationship between the MTM subtype and
postoperative recurrence

For the 255 patients in center 1, the median follow-up
period was 16.15 months (interquartile range, 13-25
months). Three patients were lost to follow-up within one
year, one of whom was MTM positive. The recurrence-
free survival rates at 3, 6, and 12 months for the whole
study population were 97.23%, 92.86%, and 88.10%,
respectively. 14 (8.38%) in non-MTM patients and 16
(19.05%) in MTM patients experienced intrahepatic
recurrences within one year after surgery (Fig. 6a). There
was a statistically significant difference in the one-year
postoperative recurrence rates between non-MTM and
MTM-HCC as shown in stratification analysis of Kaplan-
Meier curves of RES. For the BM + CEUS model, signifi-
cant differences in RFS were seen between the predicted
MTM-HCC and non-MTM-HCC patients (log-rank test,
p<0.001, Fig. 6b).

For the 89 patients from center 2 and 3, the median
follow-up period was 23.76 months (interquartile range,
1-47 months). A total of 16 patients were lost to follow-
up within one year. The one-year recurrence-free survival
rates were 92.71% and 91.67% in non-MTM patients and
MTM patients, respectively. No statistically significant
difference in one-year postoperative recurrence rates
was found in either actual non-MTM patients and MTM
patients or model predicted non-MTM patients and
MTM patients (Supplementary Fig. 7).

Discussion
In this study, we built and validated an interpretable ML
model to identify high risk MTM-HCC from the other
HCC subtypes. The AUCs of the BM + CEUS; model for
discriminating MTM-HCC from non-MTM HCC were
higher than the BMUS; model and the C.,; model in
the external test set (0.878 vs. 0.605 and 0.594, p <0.05).
The BM +CEUSy and hybridy, - models demonstrated
comparable performance in both test sets (p>0.05), sug-
gesting similar discriminative capability regardless of
feature composition. Additionally, the AdaBoost-based
BM+CEUS; model demonstrated significant prognostic
power in stratifying early recurrence-free survival (less
than 1 year), with p<0. 001.The model also exhibited
promising interpretability, allowing for a better under-
standing of the factors contributing to its predictions.
MTM subtype is a significant risk factor for tumor
recurrence following surgery in HCC and can only be
confirmed through microscopic examination. Identify-
ing MTM-HCC before treatment can offer valuable prog-
nostic insights and lead to the implementation of a more
rigorous follow-up strategy. Many studies have focused
on the identification of MTM-HCC due to its poor prog-
nosis in recent years. Previous investigations utilizing
conventional imaging biomarkers and clinical variables
for MTM-HCC prediction have demonstrated variable
diagnostic performance, with reported AUC from 0.69 to
0.89 [8, 9, 11; 24]. In the past two years, an ever-growing
number of studies have focused on radiomics analysis in
MTM subtype prediction based on CT or MRI [25-28].
Li et al. and Feng et al. constructed CT-based radiomics
models for MTM subtype prediction and achieved the
AUC of 0.89 and 0.74, respectively [25, 26]. For MRI-
related study, Zhang et al. developed a multiparamet-
ric MRI radiomics model incorporating both imaging
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signatures and clinic-radiological variables, reporting dis-
criminative performance of 0.81 [28]. As far as we know,
this study was the first to perform ML analysis to explore
the performance of CUES-based radiomics in prediction
of MTM-HCC preoperatively.

As a supplement to conventional US, CEUS can sig-
nificantly improve the diagnostic efficiency for focal
liver lesions and is recommended as a routine examina-
tion for HCC at-risk patients in the guidelines [29, 30].
For the construction of ML models, radiomics features
from BMUS images and key frames at different phases
of CEUS were employed. ML model based on BMUS
and CEUS radiomics features (BM+CEUS; model)
showed superior predictive performance than ML model
based on BMUS radiomics features (BMUSy model).
MTM-HCC has been reported to be linked to a distinc-
tive microvascular pattern, referred to as a sinusoid-like
microvascular pattern characterized by a cobweb-like
network of micro-vessels that surround individual HCC
clusters [31]. HCCs exhibiting this vascular pattern are
associated with low microvascular density and a high
incidence of tumor necrosis [32, 33]. This explains why
the performance of BM+CEUS; model is significantly
better than that of the BMUS; model, as it can reflect
valuable information about tumor perfusion in addition
to morphological features.

For the construction of the conventional clinic-radio-
logical model, except for the CEUS imaging features
obtained from human interpretation, laboratory indica-
tors were also evaluated. Independent factors included
cirrhosis, PVP hypo-enhancement, elevated AFP level
(>40 ng/mL), and lowered albumin level (<29 g/L) which
was similar with that in other studies [7, 24]. However,
the performance of C.,; model was far from satisfac-
tory with an AUC of 0.658 and 0.594 in the internal and
external test set respectively. What’s more, the inclusion
of clinical indicators failed to improve the BM + CEUSy
model’s performance in either the internal or the exter-
nal test set (both p>0.05). We consider that substan-
tial information overlaps between clinical features and
radiomics features is the main reason for the limited
contribution of clinical variables. Multiple papers con-
firm that radiomics features and serum biomarkers often
measure different manifestations of the same underlying
biological processes. Rizzo et al. explicitly mentioned the
correlation between certain radiomic features and serum
CA-125 level in ovarian cancer [34]. Ji et al. found asso-
ciations between CT arterial phase texture and serum
AFP, reflecting shared biological information about
tumor aggressiveness and behavior [35]. Besides, we con-
sider that imaging features interpreted by radiologists are
inherently subjective and macroscopic which may have
limited value in predicting MTM subtype. In contrast to
this, the texture features included in radiomics are at the
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microscopic scale and can be objectively quantified and
calculated. Texture analysis focuses on the most funda-
mental informational features within an image which
enables quantification of image heterogeneity caused by
changes imperceptible to the human eye [36]. Research
indicated a strong correlation between radiomic fea-
tures and cellular-level heterogeneity indices [37, 38].
Radiomics offers potential as a complementary tool for
non-invasive tumor characterization and quantification
of intra-tumoral heterogeneity [39—-41]. As the pathologi-
cal diagnostic criterion of MTM subtype, predominant
(i.e., >50% of the tumor area) macrotrabecular architec-
ture is a change at the histocytological level. BM + CEUSy
model based on radiomics features can effectively capture
subtle changes in BMUS and CEUS images, thus demon-
strating outstanding model performance compared to
the C,r model.

From the interpretability SHAP plots of the
BM +CEUS; model, we can see that the top-ranked
radiomic features mainly acquired from the arterial phase
and the delayed phase (Fig. 4a and b). MTM-HCC is
reported to be associated with LR-M features, particu-
larly the rim-like enhancement with central hypoenhanc-
ing areas in the arterial phase [13, 42]. What’s more, AP
hypovascular component has been reported as an impor-
tant characteristic of MTM-HCC in many studies on CT
and MRI [12, 43, 44]. In some other studies, MTM-HCC
exhibited a poorly differentiated status [7, 45], which
would show higher washout rate [46, 47]. The above
points explain why radiomics features from AP and DP
carry more weight in the BM + CEUSy model.

In addition to the detection of MTM subtype, the
model’s potential in prognosis prediction is also a point
of interest for us. Patients with pathologically confirmed
MTM-HCC in center 1 exhibited a higher recurrence
rate within one year after surgery, which is consistent
with previous studies [7]. The survival curve of MTM-
HCC and non-MTM-HCC predicted by the BM + CEUSy
model was close to the actual RFS survival time. A sta-
tistical difference in 1-year RFS was shown between the
predicted MTM-HCC and non-MTM-HCC patients in
center 1 which indicated that the BM+CEUS; model
might be promising in stratifying the prognosis of HCC
patients. The limited sample size may account for the
lack of statistically significant differences in 1-year RFS
observed in the external centers.

This study has several limitations. First, due to the rela-
tively low proportion of the MTM subtype in HCC, the
sample size for this subtype is relatively small when con-
structing predictive models, which may lead to bias in
ML. Second, the dataset was predominantly composed
of patients of East Asian descent, with a high incidence
of HBV-related HCC. Consequently, caution is essen-
tial when applying the model’s findings to HCC patients
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without history of HBV. Additional validation in varied
patient populations is necessary in the future. Third, the
retrospective nature of the study introduces inherent
biases. To improve the reliability of the results, future
research should include larger, well-structured prospec-
tive datasets for both model training and validation.

In summary, our study introduced an ML-assisted
radiomics model based on BMUS and CEUS for precise
prediction of MTM subtype and RES in patients with
HCC.
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