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Abstract
Background  This study aimed to develop and validate an interpretable radiomics model using quantitative features 
from B-mode ultrasound (BMUS) and contrast-enhanced ultrasound (CEUS) for predicting macrotrabecular-massive 
(MTM) hepatocellular carcinoma (HCC).

Methods  From October 2020 to September 2023, 344 patients (mean age: 58.20 ± 10.70 years; 275 men) with 
surgically resected HCC were retrospectively enrolled from three medical centers. Radiomics features were extracted 
from BMUS and CEUS, followed by a multiple-step feature selection process. BMUSR model (based on BMUS radiomics 
features), BM + CEUSR model (based on BMUS and CEUS radiomics features) and hybridR+C model (integrated clinical 
indicators and radiomic features) were established. These radiomics models’ performance was compared with 
conventional clinic-radiological (CC+R) model using area under the receiver operating characteristic curve (AUC). 
SHapley Additive exPlanations (SHAP) method was used to interpret model performance. The model’s potential for 
predicting recurrence-free survival (RFS) was further analyzed.

Results  Among ten distinct machine learning classifiers evaluated, the AdaBoost algorithm demonstrated the 
highest classification performance. The AUCs of the BM + CEUSR model for identifying MTM-HCC were higher than 
the BMUSR model and the conventional clinic-radiological model in both validation (0.880 vs. 0.720 and 0.658, both 
p < 0.05) and test sets (0.878 vs. 0.605 and 0.594, both p < 0.05). No statistical differences were observed between the 
BM + CEUSR model and the hybridR+C model in either set (p > 0.05). Additionally, the AdaBoost-based BM + CEUSR 
model showed promising in stratifying early recurrence-free survival, with p < 0.001.
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Background
Even with recent advancements in the treatment of hepa-
tocellular carcinoma (HCC), high recurrence rates and 
poor prognosis continue to be pressing concerns [1]. 
Different HCC subtypes exhibit significant heteroge-
neity in clinical presentation, radiology findings, H&E 
morphology, molecular studies, and outcomes [2, 3]. 
Understanding and characterizing heterogeneity across 
HCC subtypes is critically important, as it fundamentally 
informs core dimensions of patient management—span-
ning diagnostic decision-making, therapeutic strategy 
formulation, and prognostic evaluation. However, cur-
rent noninvasive diagnostic methods are still unable to 
classify hepatocellular carcinoma preoperatively, thus 
hindering the implementation of precise treatments.

The macrotrabecular-massive (MTM) subtype, rec-
ognized by the WHO in 2019, is characterized by a pre-
dominantly (> 50%) macrotrabecular growth pattern, 
accompanied by satellite lesions and vascular invasion, 
contributing to its highly aggressive nature and poor 
prognosis in HCC [4, 5]. Research indicates that this sub-
type serves as a significant predictor of both overall and 
early recurrence following surgical resection or radiofre-
quency ablation [6, 7]. Efforts have been devoted to pre-
operative prediction of MTM-HCC by imaging methods. 
Several imaging features have been identified to be asso-
ciated with MTM-HCC, such as larger size [8], intratu-
mor necrosis [9–11], hypo-enhancing components in the 
arterial phase (AP) [12], and a high frequency of tumor 
presence in veins [13]. However, evaluating imaging 
characteristics is prone to interobserver variability, which 
can lead to discrepancies among radiologists.

Radiomics transforms medical images into mineable 
high-dimensional datasets by computationally extract-
ing subvisual quantitative features—including morpho-
logical, intensity-based, and textural signatures beyond 
human perceptual limits [14, 15]. Radiomics has dem-
onstrated potential as a quantitative tool for predict-
ing tumor characteristics that are challenging to visually 
identify or quantify, such as tumor grading and lesion 
heterogeneity [16–18]. Promising results have been 
achieved in using radiomics method to distinguish MTM 
from non-MTM-HCC based on CT and MRI scans [12]. 
By leveraging its ability to process quantitative image 
information, machine learning (ML)-based computa-
tional approaches have been introduced to enhance the 
diagnostic accuracy of disease prediction [19]. How-
ever, the limited interpretability inherent in ML-based 

approaches has constrained the clinical translation of 
radiomics research findings.

As far as we know, the application of ML radiomics 
to B-mode ultrasound (BMUS) and contrast-enhanced 
ultrasound (CEUS) for MTM-HCC prediction has not 
been previously reported. The objective of this research 
was to evaluate the diagnostic performance of interpre-
table ML-based radiomics applied to BMUS and CEUS 
for detecting MTM-HCC, using postoperative histopa-
thology as the gold standard. In addition, the study aimed 
to further address model interpretability by linking 
radiomic features to tumor pathology findings.

Methods
This multi-institutional study was approved by the eth-
ics committee of the institution (No: 2024-203R), and 
informed consent was obtained.

Study patients
Data of HCC patients who underwent preoperative 
B-mode US (BMUS) and CEUS examinations were retro-
spectively collected at Zhongshan Hospital, Fudan Uni-
versity from July 2022 to July 2023. The inclusion criteria 
comprised: (a) histopathological confirmation of HCC 
following surgical resection and (b) preoperative CEUS 
performed within a 2-week timeframe. The exclusion cri-
teria were as follows: (a) HCC with incomplete clinical 
information or unclear pathology; (b) previously treated 
lesions; (c) lesion size too large to be fully displayed in a 
single US image; (d) poor-quality US data such as incom-
plete clips for AP, portal venous phase (PVP), or delayed 
phase (DP); or the lesion could not be recognized on 
B-mode US. Finally, a total of 255 patients were enrolled 
in our study following the application of these criteria 
(Fig. 1).

An external validation set comprising 89 HCC patients 
was established at two participating institutions (Sun Yat-
sen University Cancer Center and Shanghai Tenth Peo-
ple’s Hospital) using the same enrollment criteria applied 
to the development cohort, with data collected from 
October 2020 through September 2023.

The electronic medical record system was utilized to 
record the following clinical indicators: age, sex, infec-
tious status of Hepatitis B virus (HBV) or Hepatitis C 
virus (HCV), Alpha-Fetoprotein (AFP) level, Albumin 
(ALB) level, Aspartate Aminotransferase (AST) level, 
MTM subtype, and postoperative recurrence data. To 
determine the MTM subtype, pathology slides of the 

Conclusion  The AdaBoost-based BM + CEUSR model shows promise as a tool for preoperatively identifying MTM-HCC 
and may also be beneficial in predicting prognosis.

Keywords  Macrotrabecular-massive hepatocellular carcinoma, Contrast enhanced ultrasound, Radiomics, SHapley 
additive explanations, Prognosis



Page 3 of 13Lu et al. The Ultrasound Journal           (2025) 17:53 

tumor specimens were reviewed by an abdominal pathol-
ogist. The MTM subtype is characterized by a predomi-
nant (> 50%) architectural pattern (cords of tumor cells 
thicker than 8 cells) observed upon hematoxylin-eosin 
staining.

BMUS and CEUS protocol
All BMUS and CEUS acquisitions were conducted by 
three board-certified radiologists (each with > 10 years of 
experience) using standardized ultrasound systems: Sam-
sung RS80A with CA1-7  A transducer (1.0–7.0  MHz), 
Acuson Sequoia with 5C1 transducer (2.0–5.0 MHz), or 
GE LOGIQ E9 with C1-5-D transducer (1.0–5.0  MHz) 
(Supplementary Table 1).

In cases of multiple hepatic tumors, the largest lesion 
(by diameter) was chosen as the target for assessment. 
Prior to CEUS examination, BMUS and color Doppler 
US were initially performed to localize the target lesion. 
Real-time CEUS imaging was performed on the larg-
est section of the targeted lesion. Dual-screen enabled 
to simultaneously display the BMUS and CEUS images, 
with the timer documenting three phases features of 
CEUS following contrast agent administration. Each 
patient received either 2.0 mL of SonoVue (Bracco) or 0.6 
mL of Sonazoid (GE Healthcare) via manual bolus injec-
tion, immediately followed by a 5 mL saline flush (0.9% 
NaCl). Timer activation was synchronized precisely with 
contrast bolus injection. The lesion was observed con-
tinuously for at least 120 s, and then scanned at 20–30 s 
intervals and recorded for 5 min or until the microbub-
bles disappeared. The installed contrast specific imaging 
mode was coded phase inversion (CPI) with a frame rate 
of 15–20 fps. CPI is based on pulse inversion harmonic 
imaging and can enable effective tissue cancellation and 

avoid destruction of microbubbles in the circulation. All 
dynamic CEUS cine loops were stored in DICOM format 
for offline evaluation. Three phases were AP (10–45  s 
after post-injection), PVP (45–120  s), and DP (121–
300 s), respectively.

Clinic-radiological predictor selection and construction for 
the conventional clinic-radiological model
Two board-certified radiologists (each with > 3 years of 
specialized experience in hepatic CEUS) independently 
reviewed all B-mode ultrasonography and contrast-
enhanced cine loops. The readers were blinded to all clin-
ical and pathological data except for the confirmed HCC 
diagnosis. Any interpretive discrepancies were resolved 
through consensus discussion between the two radi-
ologists. The following sonographic characteristics were 
evaluated: a) liver background (cirrhosis/non-cirrhosis); 
(b) tumor largest diameter; (c) tumor boundary (clear/
obscure); (d) halo sign; (e) AP enhancement pattern 
(homogeneous/heterogeneous); (f ) intralesional necro-
sis (defined as non-enhancing regions persisting dur-
ing entire CEUS process); (g) PVP enhancement pattern 
(washout/non-washout).

Univariable and multivariable regression analysis was 
performed on clinical indicators extracted from the 
institutional electronic medical record system and radi-
ologist interpreted imaging features. The conventional 
clinic-radiological (CC+R) model was developed through 
multivariable logistic regression analysis, incorporating 
statistically significant independent predictors identified 
during model construction. (Fig. 2).

Fig. 1  Flowchart of patient selection in this study. CEUS, contrast-enhanced ultrasound; HCC, hepatocellular carcinoma
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BMUS and CEUS image segmentation and radiomics 
features selection
Images of each lesion confirmed by two radiologists (with 
7 and 8 years of experience in abdominal US, respec-
tively) who were blinded to the clinicopathologic data in 
consensus (including 4 US images from BMUS, AP, PVP 
and DP of CEUS) were used for radiomics analysis. The 
selection criteria for the three key CEUS images were as 
follows: for AP, the image showing peak lesion enhance-
ment was selected; for PVP, the image capturing washout 
(if present) was chosen, otherwise, one image between 90 
and 120  s was selected; and for DP, due to intermittent 
scanning, one image between 180 and 300 s was included.

One radiologist, with three years of experience in 
abdominal US, manually delineated tumor boundar-
ies by contouring regions of interest (ROIs) using ITK-
SNAP software (version 3.6.0; www.itksnap.org). 1070 
radiomics features were extracted for each ROI (a total 
of 4280 features from each patient), using the IFoundry 

software (Intelligence Foundry 1.2, GE Healthcare) (Sup-
plementary Material S2).

In addition, the same radiologist performed dupli-
cate ROI delineations on 30 randomly selected cases 
with a 7-day interval between measurements, allowing 
assessment of segmentation consistency while control-
ling recall bias. To assess inter-observer variability, an 
additional radiologist (4 years of specialized US expe-
rience) independently contoured ROIs on the same 
image set, enabling comparative analysis of segmenta-
tion consistency between operators. Interclass correla-
tion coefficient (ICC) was used to evaluate the intra- and 
inter-operator agreement of feature extraction. An 
ICC > 0.80 was considered excellent.

Radiomics feature selection was performed through a 
multi-step approach: (1) ICC analysis retaining features 
with excellent reproducibility (ICC > 0.8); (2) indepen-
dent samples t-test identifying features with significant 
discriminative power (p < 0.05); (3) Spearman’s rank cor-
relation eliminating redundant features (r ≥ 0.8); and (4) 

Fig. 2  Study workflow of the conventional clinic-radiological model, US radiomics model, and hybrid model
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LASSO regression with 10-fold cross-validation for final 
feature selection.

Construction and validation of the ML-based radiomics 
models
Ten distinct machine learning algorithms were employed 
to develop predictive models (Supplementary Material 
S3) [20]. Selected radiomics features and clinical indi-
cators served as inputs for training different radiomics 
models. Model optimization was performed via five-fold 
cross-validation, with subsequent performance evalu-
ation based on the area under the receiver operating 
characteristic curve (AUC). The algorithm demonstrat-
ing superior discriminative ability (highest AUC) in the 
validation cohort was selected as the optimal radiomics 
model.

Three type radiomics models were constructed as fol-
lows: the ML-based BMUSR model based on BMUS 
radiomics features; the ML-based BM + CEUSR model 
based on BMUS and CEUS radiomics features; and the 
ML-based hybridR+C model based on BMUS and CEUS 
radiomics features together with clinical indicators 
(Fig. 2).

Interpretability of the optimal ML model’s performance
ML-based models have interpretability issues because 
they work like a “black box”. In this study, the SHAP algo-
rithm was employed to explain the prediction results of 
the best-performing model using Python open-source 
SHAP package. SHAP algorithm is based on the Shap-
ley value theory, decomposing the prediction results into 
the impact of each feature, providing interpretability for 
the model [21–23]. The summary plot provides insights 
into both feature importance and feature effects. Each 
point on the plot corresponds to a SHAP value for a spe-
cific feature and instance. It illustrates the relationship 
between feature values and their influence on the diagno-
sis. The heatmap reflects the specific impact of each fea-
ture on each sample.

The relationship between the MTM subtype and 
postoperative recurrence
The primary outcome measure was recurrence-free sur-
vival (RFS), calculated from the date of curative resection 
to the first documented event of tumor recurrence (either 
intrahepatic or extrahepatic) or mortality. Intrahepatic 
recurrence was characterized by the emergence of new 
tumors within the liver. Patients were followed until 
recurrence, death, or the end date of this study. Follow-up 
data was gathered and reviewed from patients’ medical 
records. Comprehensive follow-up data were obtained 
through systematic medical record review supplemented 
by structured telephone interviews for patients lost to 
clinical follow-up.

Statistical analysis
All statistical analyses were conducted using Python 3.8.8 
and SPSS Statistics 22.0. Normally distributed continu-
ous variables were expressed as mean ± standard devia-
tion and compared using independent samples t-tests. 
Categorical variables were presented as frequencies 
and analyzed with Pearson’s chi-square test. Diagnos-
tic accuracy was assessed by calculating the area under 
the receiver operating characteristic curve (AUC) with 
95% confidence intervals. Univariate and multivariate 
analyses were performed to select the clinical indicators. 
DeLong’s test was used to assess differences between 
AUCs. The RFS rates were calculated using the Kaplan-
Meier estimator, with between-group comparisons per-
formed via log-rank testing. A p-value of less than 0.05 
was considered statistically significant.

Result
Baseline characteristics
Eventually, a total of 255 HCC patients (202 men and 
53 women) fulfilled eligibility criteria were included for 
model construction. They were randomly assigned to the 
training and validation sets in an 8-to-2 ratio. 65 HCC 
patients from center 1 and 24 HCC patients from center 
2, respectively, constituted the test set. The clinic-radio-
logical characteristics of patients in the training, inter-
nal validation, and external test sets are summarized in 
Table 1.

Construction and validation of the CC+R model and the 
ML-based US radiomics models
After univariate and multivariate logistic regression anal-
ysis, the cirrhosis, PVP hypo-enhancement, elevated AFP 
level (> 40 ng/mL), and lowered albumin level (< 29 g/L) 
were decided as independent risk factors of MTM-HCC 
in the training set (all p < 0.05) (Table 2). CEUS and his-
topathological images of a representative MTM-HCC 
case (Fig. 3). For the prediction of MTM-HCC, the CC+R 
model achieved an AUC of 0.658, a sensitivity of 72.2%, a 
specificity of 54.5%, a PPV of 46.4%, a NPV of 78.3%, and 
an accuracy of 60.8% in the validation set (Table 4).

The feature selection process employed a multi-step 
approach: after ICC analysis, features were reduced from 
4,280 to 3,437; following t-test, features decreased to 
914; after Spearman’s rank correlation, features were fur-
ther reduced to 666; and finally, LASSO regression nar-
rowed features down to 47. These 47 radiomics features 
included 11 radiomics features from BMUS, 11 radiomics 
features from AP of CEUS, 11 radiomics features from 
PVP of CEUS, and 14 radiomics features from DP of 
CEUS (Supplementary Fig.  4 and Supplementary Table 
5).

For the BMUSR model, the AdaBoost classifier with the 
selected 11 radiomics features showed the highest AUC 
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of 0.720 compared with other 9 ML classifiers (AUC: 
0.554–0.712) in the validation set for discriminating 
between MTM and non-MTM HCC lesions. The sensi-
tivity, specificity, PPV, NPV, and accuracy of the model 
were 58.8%, 88.2%, 71.4%, 81.1%, and 78.4%, respectively 
(Tables 3 and 4).

For the BM + CEUSR model, the AdaBoost algorithm 
with the selected 47 radiomics features showed the high-
est AUC of 0.880 in comparison to other 9 ML algorithms 
(AUC: 0.614–0.836) in the validation set for discriminat-
ing between MTM and non-MTM HCC lesions. The 
training curve of BM + CEUSR model was shown in Sup-
plementary Fig. 6. The sensitivity, specificity, PPV, NPV, 

and accuracy of the model were 77.8%, 90.9%, 82.4%, 
88.2%, and 86.3%, respectively (Tables 3 and 4).

For the hybridR+C model, the AdaBoost algorithm 
with 47 radiomic features and two laboratory features 
showed the highest AUC of 0.914 compared with other 9 
ML algorithms (AUC: 0.653–0.841) in the validation set 
for discriminating between MTM and non-MTM HCC 
lesions. The sensitivity, specificity, PPV, NPV, and accu-
racy of the model were 80.0%, 100%, 100%, 89.7%, and 
92.7%, respectively (Tables 3 and 4).

Comparison between the CC+R model and three types of 
radiomics models
The diagnostic results of the CC+R model and three types 
of radiomics models in internal validation and external 
test sets were shown in Table 3; Fig. 4.

Table 1  The clinic-radiological characteristics of HCC patients in 
the training set, internal validation set, and external test set
Character-
istics

Total Training set Validation 
set

Test set

No. of 
patients

344 204 51 89

Sex
 Female 69 (20.06) 43 (21.08) 10 (19.61) 16 (17.98)
 Male 275 (79.94) 161 (78.92) 41 (80.39) 73 (82.02)
 Mean age, 
year

58.20 ± 10.70 58.79 ± 10.16 59.90 ± 11.02 55.88 ± 11.46

(range)* (25, 87) (25, 87) (29, 79) (26, 77)
MTM 
subtype

103 (29.94) 71 (34.80) 15 (29.41) 17 (19.10)

HBV/HCV 
history

298 (86.63) 176 (86.24) 43 (84.31) 79 (88.76)

AFP
 ≤ 40 ng/mL 206 (59.88) 119 (58.33) 31 (60.78) 56 (62.92)
 > 40 ng/mL 138 (40.12) 85 (41.67) 20 (39.22) 33 (37.08)
ALB
 < 29 g/L 16 (4.65) 9 (4.41) 4 (7.84) 3 (3.37)
 ≥ 29 g/L 328 (95.35) 195 (95.59) 47 (92.16) 86 (96.63)
Mean tumor 
size, cm

4.24 ± 2.43 4.00 ± 2.69 3.98 ± 2.25 4.93 ± 1.70

(range)* (0.8, 13) (0.8, 13) (1, 11) (1, 10.9)
Cirrhosis 146 (42.44) 96 (47.06) 19 (37.25) 31 (34.83)
Margin
 Clear 67 (19.48) 41 (20.00) 10 (19.61) 16 (17.98)
 Obscure 277 (80.52) 163 (80.00) 41 (80.39) 73 (82.02)
 Halo sign 61 (17.73) 38 (18.63) 9 (17.65) 14 (15.73)
 AP hetero-
geneous 
enhance-
ment

283 (82.27) 74 (36.27) 18 (35.29) 32 (35.96)

 PVP hypo-
enhance-
ment

114 (33.14) 69 (33.82) 17 (33.33) 28 (31.46)

 Necrosis 36 (10.47) 27 (13.24) 3 (5.88) 6 (6.74)
Data in parentheses are percentages except for special indications

MTM, macrotrabecular-massive; HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; 
AFP, Alpha-fetoprotein; ALB, Albumin; AP, arterial phase; PVP, portal venous 
phase

*Data are presented as the mean ± standard deviation, with ranges in 
parentheses

Table 2  The univariate and multivariate logistic regression 
analysis in clinic-radiological features for the prediction of MTM-
HCC
Characteristics Univariate analysis Multivariate 

analysis
OR (95% CI) p value OR (95% CI) p 

value
HBV/HCV history
 Absence vs. 
presence

0.615 
(0.275,1.373)

0.235 / /

AFP
 ≤ 40 vs. > 40 ng/mL 0.374 (0.219, 

0.638)
< 0.001 0.433 (0.246, 

0.761)
0.004

ALB
 ≥ 29 vs. < 29 g/L 0.137 (0.037, 

0.513)
0.003 0.147 (0.037, 

0.579)
0.006

 Tumor size 1.154 (1.043, 
1.276)

0.005 1.083 (0.952, 
1.233)

0.227

Cirrhosis
 Absence vs. 
presence

0.585 (0.285, 
0.824)

0.007 0.492 (0.279, 
0.871)

0.015

Margin
 Clear vs. obscure 0.541 (0.267, 

1.096)
0.088 / /

 Halo sign
 Absence vs. 
presence

0.783 (0.406, 
1.507)

0.464 / /

AP enhancement 
pattern
 Homogeneous vs. 
heterogeneous

0.474 (0.278, 
0.811)

0.006 0.742 (0.380, 
1.449)

0.382

PVP 
hypo-enhancement
 Absence vs. 
presence

0.430 (0.238, 
0.783)

0.006 0.455 (0.244, 
0.851)

0.014

Necrosis
 Absence vs. 
presence

0.263 (0.118, 
0.587)

0.001 0.464 (0.173, 
1.243)

0.127

HBV, Hepatitis B Virus; HCV, Hepatitis C Virus; AFP, Alpha-fetoprotein; ALB, 
Albumin; AP, arterial phase; PVP, portal venous phase
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Table 3  The AUC results of ten ML algorithms for the BMUSR, BM + CEUSR, and hybridR+C models
ML algorithms BMUSR BM + CEUSR HybridR+C

AUC (95% CI) p value AUC (95% CI) p value AUC (95% CI) p value
AdaBoost 0.720 (0.554,0.885) / 0.880

(0.820, 0.935)
/ 0.914

(0.813, 1.000)
/

Gradient boosting 0.704 (0.542,0.865) 0.865 0.794
(0.632, 0.937)

0.113 0.808
(0.687, 0.929)

0.190

XGBoost 0.680 (0.508,0.802) 0.709 0.836
(0.671, 0.955)

0.212 0.841
(0.721, 0.955)

0.348

Bagging 0.649 (0.488,0.811) 0.649 0.767
(0.528, 0.960)

0.166 0.814
(0.678, 0.951)

0.252

Decision tree 0.554 (0.389,0.720) 0.127 0.614
(0.464, 0.761)

< 0.001 0.678
(0.545, 0.812)

0.007

Extra trees 0.712 (0.555,0.869) 0.903 0.666
(0.487, 0.830)

0.007 0.775
(0.629, 0.920)

0.127

Logistics regression 0.616 (0.449,0.784) 0.381 0.666
(0.498, 0.819)

0.003 0.733
(0.596, 0.871)

0.041

Naïve Bayes 0.701 (0.541,0.860) 0.828 0.783
(0.652, 0.914)

0.362 0.733
(0.596, 0.871)

0.052

Random forest 0.607 (0.436,0.779) 0.338 0.790
(0.637, 0.915)

0.173 0.721
(0.555, 0.875)

0.052

K-nearest neighbour 0.563 (0.322,0.803) 0.286 0.621
(0.462, 0.789)

< 0.001 0.653
(0.505, 0.800)

0.005

CC+R model, based on clinic-radiological characteristics; BMUSR model, based on B-mode US radiomics features; BM + CEUSR model, based on B-mode US and CEUS 
radiomics features; Hybridc+R model, based on clinical features and B-mode US and CEUS radiomics features;

ML, machine learning. AUC, area under the curve. CI, confidence interval

Fig. 3  A case of MTM-HCC in a 57-year-old male participant with hepatitis B virus–related cirrhosis. a–e Images from preoperative CEUS demonstrate 
an 9.4-cm HCC in the left anterior lobe of the liver; the lesion is marked by white arrowheads. a The lesion exhibited an ill-defined margin with hetero-
geneous echotexture. b, c A visible intratumoral artery (red arrow) and hypoenhancing component (green arrow) during the arterial phase. d Early 
heterogeneous washout was observed at 55 s. e Delayed phase image showed marked washout extending beyond the margins of the B-mode lesion. f 
Photomicrograph reveals a macrotrabecular pattern. (Hematoxylin-eosin stain)
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The AdaBoost-based BMUSR model showed a simi-
lar performance compared to that of the CC+R model in 
terms of AUCs (0.720 vs. 0.658 and 0.605 vs. 0.594, both 
p > 0.05) in the internal validation and external test set, 
respectively.

The AdaBoost-based BM + CEUSR model showed a 
better performance compared to that of the CC+R model 
in terms of AUCs (0.880 vs. 0.658 and 0.878 vs. 0.594, 

both p < 0.05) in the internal validation and external test 
set, respectively. In comparison of the AdaBoost-based 
BM + CEUSR model and the AdaBoost-based BMUSR 
model, no statistical difference was found between the 
two models in terms of AUCs (0.880 vs. 0.720, p > 0.05) in 
the internal validation set. However, in the external test 
set AdaBoost-based BM + CEUSR model demonstrated 

Table 4  The diagnostic performance of various models in discrimination MTM from non-MTM ones
Models AUC SEN SPE PPV NPV ACC p value*
CC+R model
 Validation set 0.658

(0.499, 0.817)
72.2
(51.5, 92.9)

54.5
(37.6, 71.5)

46.4
(28.0, 64.9)

78.3
(61.4, 95.1)

60.8
(59.9, 61.7)

0.029

 Test set 0.594
(0.449, 0.740)

64.7
(42.0, 87.4)

50.0
(38.5, 61.5)

23.4
(11.3, 35.5)

0.857
(75.1, 96.3)

0.528
(52.3, 53.4)

0.005

BMUSR model
 Validation set 0.720

(0.554, 0.885)
58.8
(35.4, 82.2)

88.2
(77.4, 99.1)

71.4
(47.8, 95.1)

81.1
(68.5, 93.7)

78.4
(77.8, 79.1)

0.121

 Test set 0.605
(0.478, 0.731)

88.2
(72.9, 100)

43.1
(31.6, 54.5)

26.8
(15.2, 38.4)

93.9
(85.8, 102)

51.7
(51.1, 52.2)

0.012

BM + CEUSR model
 Validation set 0.880

(0.766, 0.995)
77.8
(58.6, 97.0)

90.9
(81.1, 100)

82.4
(64.2, 100)

88.2
(77.4, 99.1)

86.3
(85.8, 86.7)

/

 Test set 0.878
(0.769, 0.987)

82.4
(64.2, 100)

88.9
(81.6, 96.1)

63.6
(43.5, 83.7)

95.5
(90.6, 100)

87.6
(87.4, 87.9)

/

HybridR+C model
 Validation set 0.914

(0.813, 1.00)
80.0
(62.5, 97.5)

100
(100, 100)

100
(100, 100)

89.7
(80.2, 99.3)

92.7
(92.5, 93.0)

0.574

 Test set 0.892
(0.776, 1.00)

82.4
(64.2, 100)

93.1
(87.2, 98.9)

73.7
(53.9, 93.5)

95.7
(91.0, 100)

91.0
(90.8, 91.2)

0.112

Data in parentheses are 95% confidence interval

CC+R model, based on clinic-radiological characteristics; BMUSR model, based on B-mode US radiomics features; BM + CEUSR model, based on B-mode US and CEUS 
radiomics features; hybridR+C model, based on clinical features and B-mode US and CEUS radiomics features;

SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve. * P value of AUCs differ from BM + CEUSR 
model

Fig. 4  Receiver operating characteristic (ROC) curves of the C model, BMUSR model, BM + CEUSR model, and hybridR+C model in the internal validation 
(a) and external test (b) sets. The conventional clinic-radiological (CC+R) model, based on clinic-radiological characteristics; The BMUSR model, based on 
B-mode US radiomics features; The BM + CEUSR model, based on B-mode and CEUS radiomics features; The hybridR+C model, based on CEUS radiomics 
features and clinic-radiological features
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superior performance compared to the AdaBoost-based 
BMUSR model in terms of AUCs (0.878 vs.0.605, p < 0.05).

No statistical difference was found between the Ada-
Boost-based hybridR+C model and the AdaBoost-based 
BM + CEUSR model in the internal validation and exter-
nal test set (0.914 vs. 0.880 and 0.892 vs. 0.878, both 
p > 0.05).

The ML-based model interpretation
SHAP values represent the impact of each feature on the 
final prediction, providing a clear and effective expla-
nation of model predictions for individual patients. 
The SHAP beeswarm plot showed the top 20 crucial 
radiomics features in BM + CUESR model (Fig.  5a). The 
blue and red dots indicate whether a factor decreased 
(blue) or increased (red) the risk of MTM subtype. 
The SHAP heatmap illustrates the impact of the top 9 
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Fig. 5  SHAP interpretation of the BM + CEUSR model. a The top 20 radiomics features ranked by importance, evaluated with stability and interpretability 
using the CEUSR model. The higher SHAP value of a feature is given, the higher risk of MTM-HCC would be. The red section in the feature value indicates 
a higher value. b The heatmap reflects the specific impact of a single feature on each sample in the external test set. AP arterial phase, DP delayed phase, 
PVP portal venous phase, B b-mode
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radiomics features on each individual case in the exter-
nal set, with darker colors indicating a greater impact 
(Fig. 5b).

The relationship between the MTM subtype and 
postoperative recurrence
For the 255 patients in center 1, the median follow-up 
period was 16.15 months (interquartile range, 13–25 
months). Three patients were lost to follow-up within one 
year, one of whom was MTM positive. The recurrence-
free survival rates at 3, 6, and 12 months for the whole 
study population were 97.23%, 92.86%, and 88.10%, 
respectively. 14 (8.38%) in non-MTM patients and 16 
(19.05%) in MTM patients experienced intrahepatic 
recurrences within one year after surgery (Fig. 6a). There 
was a statistically significant difference in the one-year 
postoperative recurrence rates between non-MTM and 
MTM-HCC as shown in stratification analysis of Kaplan-
Meier curves of RFS. For the BM + CEUSR model, signifi-
cant differences in RFS were seen between the predicted 
MTM-HCC and non-MTM-HCC patients (log-rank test, 
p < 0.001, Fig. 6b).

For the 89 patients from center 2 and 3, the median 
follow-up period was 23.76 months (interquartile range, 
1–47 months). A total of 16 patients were lost to follow-
up within one year. The one-year recurrence-free survival 
rates were 92.71% and 91.67% in non-MTM patients and 
MTM patients, respectively. No statistically significant 
difference in one-year postoperative recurrence rates 
was found in either actual non-MTM patients and MTM 
patients or model predicted non-MTM patients and 
MTM patients (Supplementary Fig. 7).

Discussion
In this study, we built and validated an interpretable ML 
model to identify high risk MTM-HCC from the other 
HCC subtypes. The AUCs of the BM + CEUSR model for 
discriminating MTM-HCC from non-MTM HCC were 
higher than the BMUSR model and the CC+R model in 
the external test set (0.878 vs. 0.605 and 0.594, p < 0.05). 
The BM + CEUSR and hybridR+C models demonstrated 
comparable performance in both test sets (p > 0.05), sug-
gesting similar discriminative capability regardless of 
feature composition. Additionally, the AdaBoost-based 
BM+CEUSR model demonstrated significant prognostic 
power in stratifying early recurrence-free survival (less 
than 1 year), with p < 0. 001.The model also exhibited 
promising interpretability, allowing for a better under-
standing of the factors contributing to its predictions.

MTM subtype is a significant risk factor for tumor 
recurrence following surgery in HCC and can only be 
confirmed through microscopic examination. Identify-
ing MTM-HCC before treatment can offer valuable prog-
nostic insights and lead to the implementation of a more 
rigorous follow-up strategy. Many studies have focused 
on the identification of MTM-HCC due to its poor prog-
nosis in recent years. Previous investigations utilizing 
conventional imaging biomarkers and clinical variables 
for MTM-HCC prediction have demonstrated variable 
diagnostic performance, with reported AUC from 0.69 to 
0.89 [8, 9, 11; 24]. In the past two years, an ever-growing 
number of studies have focused on radiomics analysis in 
MTM subtype prediction based on CT or MRI [25–28]. 
Li et al. and Feng et al. constructed CT-based radiomics 
models for MTM subtype prediction and achieved the 
AUC of 0.89 and 0.74, respectively [25, 26]. For MRI-
related study, Zhang et al. developed a multiparamet-
ric MRI radiomics model incorporating both imaging 

Fig. 6  The recurrence-free survival rates in actual non-MTM patients and MTM patients a and BM + CEUSR model predicted non-MTM patients and MTM 
patients b in center 1
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signatures and clinic-radiological variables, reporting dis-
criminative performance of 0.81 [28]. As far as we know, 
this study was the first to perform ML analysis to explore 
the performance of CUES-based radiomics in prediction 
of MTM-HCC preoperatively.

As a supplement to conventional US, CEUS can sig-
nificantly improve the diagnostic efficiency for focal 
liver lesions and is recommended as a routine examina-
tion for HCC at-risk patients in the guidelines [29, 30]. 
For the construction of ML models, radiomics features 
from BMUS images and key frames at different phases 
of CEUS were employed. ML model based on BMUS 
and CEUS radiomics features (BM + CEUSR model) 
showed superior predictive performance than ML model 
based on BMUS radiomics features (BMUSR model). 
MTM-HCC has been reported to be linked to a distinc-
tive microvascular pattern, referred to as a sinusoid-like 
microvascular pattern characterized by a cobweb-like 
network of micro-vessels that surround individual HCC 
clusters [31]. HCCs exhibiting this vascular pattern are 
associated with low microvascular density and a high 
incidence of tumor necrosis [32, 33]. This explains why 
the performance of BM + CEUSR model is significantly 
better than that of the BMUSR model, as it can reflect 
valuable information about tumor perfusion in addition 
to morphological features.

For the construction of the conventional clinic-radio-
logical model, except for the CEUS imaging features 
obtained from human interpretation, laboratory indica-
tors were also evaluated. Independent factors included 
cirrhosis, PVP hypo-enhancement, elevated AFP level 
(> 40 ng/mL), and lowered albumin level (< 29 g/L) which 
was similar with that in other studies [7, 24]. However, 
the performance of CC+R model was far from satisfac-
tory with an AUC of 0.658 and 0.594 in the internal and 
external test set respectively. What’s more, the inclusion 
of clinical indicators failed to improve the BM + CEUSR 
model’s performance in either the internal or the exter-
nal test set (both p > 0.05). We consider that substan-
tial information overlaps between clinical features and 
radiomics features is the main reason for the limited 
contribution of clinical variables. Multiple papers con-
firm that radiomics features and serum biomarkers often 
measure different manifestations of the same underlying 
biological processes. Rizzo et al. explicitly mentioned the 
correlation between certain radiomic features and serum 
CA-125 level in ovarian cancer [34]. Ji et al. found asso-
ciations between CT arterial phase texture and serum 
AFP, reflecting shared biological information about 
tumor aggressiveness and behavior [35]. Besides, we con-
sider that imaging features interpreted by radiologists are 
inherently subjective and macroscopic which may have 
limited value in predicting MTM subtype. In contrast to 
this, the texture features included in radiomics are at the 

microscopic scale and can be objectively quantified and 
calculated. Texture analysis focuses on the most funda-
mental informational features within an image which 
enables quantification of image heterogeneity caused by 
changes imperceptible to the human eye [36]. Research 
indicated a strong correlation between radiomic fea-
tures and cellular-level heterogeneity indices [37, 38]. 
Radiomics offers potential as a complementary tool for 
non-invasive tumor characterization and quantification 
of intra-tumoral heterogeneity [39–41]. As the pathologi-
cal diagnostic criterion of MTM subtype, predominant 
(i.e., >50% of the tumor area) macrotrabecular architec-
ture is a change at the histocytological level. BM + CEUSR 
model based on radiomics features can effectively capture 
subtle changes in BMUS and CEUS images, thus demon-
strating outstanding model performance compared to 
the CC+R model.

From the interpretability SHAP plots of the 
BM + CEUSR model, we can see that the top-ranked 
radiomic features mainly acquired from the arterial phase 
and the delayed phase (Fig.  4a and b). MTM-HCC is 
reported to be associated with LR-M features, particu-
larly the rim-like enhancement with central hypoenhanc-
ing areas in the arterial phase [13, 42]. What’s more, AP 
hypovascular component has been reported as an impor-
tant characteristic of MTM-HCC in many studies on CT 
and MRI [12, 43, 44]. In some other studies, MTM-HCC 
exhibited a poorly differentiated status [7, 45], which 
would show higher washout rate [46, 47]. The above 
points explain why radiomics features from AP and DP 
carry more weight in the BM + CEUSR model.

In addition to the detection of MTM subtype, the 
model’s potential in prognosis prediction is also a point 
of interest for us. Patients with pathologically confirmed 
MTM-HCC in center 1 exhibited a higher recurrence 
rate within one year after surgery, which is consistent 
with previous studies [7]. The survival curve of MTM-
HCC and non-MTM-HCC predicted by the BM + CEUSR 
model was close to the actual RFS survival time. A sta-
tistical difference in 1-year RFS was shown between the 
predicted MTM-HCC and non-MTM-HCC patients in 
center 1 which indicated that the BM + CEUSR model 
might be promising in stratifying the prognosis of HCC 
patients. The limited sample size may account for the 
lack of statistically significant differences in 1-year RFS 
observed in the external centers.

This study has several limitations. First, due to the rela-
tively low proportion of the MTM subtype in HCC, the 
sample size for this subtype is relatively small when con-
structing predictive models, which may lead to bias in 
ML. Second, the dataset was predominantly composed 
of patients of East Asian descent, with a high incidence 
of HBV-related HCC. Consequently, caution is essen-
tial when applying the model’s findings to HCC patients 
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without history of HBV. Additional validation in varied 
patient populations is necessary in the future. Third, the 
retrospective nature of the study introduces inherent 
biases. To improve the reliability of the results, future 
research should include larger, well-structured prospec-
tive datasets for both model training and validation.

In summary, our study introduced an ML-assisted 
radiomics model based on BMUS and CEUS for precise 
prediction of MTM subtype and RFS in patients with 
HCC.
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