Human semen quality and environmental and occupational exposure to pollutants: A systematic review

Human semen quality and environmental and occupational exposure to pollutants: A systematic review

Authors

  • L. Cofone
  • I. Pindinello
  • G. D'Ancona
  • F. Grassi
  • A. Antonucci
  • M. Vitali
  • C. Protano

Keywords:

Human male fertility, semen, environmental pollution, occupational exposure, human biomonitoring

Abstract

Background. The aim of the present systematic review was to evaluate the correlation between the exposure to environmental and/or occupational pollutants and possible alteration of semen quality, focalizing the attention on the studies performed using a biomonitoring approach.

Methods. The review was conducted from inception to May 11 2023, according to the PRISMA Statement 2020 and using the following databases: Scopus, Pubmed and Web of Science. The protocol was registered on PROSPERO (CRD42023405607). Studies were considered eligible if they reported data about the association between exposure to environmental pollutants and alteration of semen quality using human biomonitoring. The quality assessment was carried out by the use of the Newcastle-Ottawa Quality Assessment Scale. Results. In total, 21 articles were included, conducted in several countries. The main matrices used for biomonitoring were urine and blood and the most sought-after contaminants were bisphenols, phthalates, pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, heavy metals and other inorganic trace elements. The results of the studies demonstrated a significant positive correlation between the increase of the pollutants’ levels in the biological matrices examined and some alterations of the semen quality indicators, such as a decrease in motility, concentration and morphology of the spermatozoa.

Conclusions. Male fertility can be negatively affected by the exposure to environmental and/or occupational pollutants. Human biomonitoring programs may be considered a useful tool for specific surveillance programs devoted to early highlight subjects who are more exposed to environmental pollutants in order to reduce risk exposure.

References

1. Levine H, Jørgensen N, Martino-Andrade A, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod. 2023 Mar 1; 29(2): 157-76. doi:

10.1093/humupd/dmac035.

2. Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015 Nov; 150(5): R159-74. doi:

10.1530/REP-15-0261.

3. Tang Q, Wu W, Zhang J, Fan R, Liu M. Environmental factors and male infertility. In: Meccariello R, Chianese R, Eds. (Internet). InTech; 2018. Available on: http://dx.doi.org/10.5772/68063.

4. Goulart ACX, Farnezi HCM, França JPBM, et al. HIV, HPV and Chlamydia trachomatis: impacts on male fertility. JBRA Assist Reprod. Oct 2020; 24(4): 492-7. doi: 10.5935/15180557.20200020.

5. Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012 Oct 1; 2(4): 253-63. doi: 10.4161/ spmg.21362.

6. Guo D, Xu M, Zhou Q, Wu C, Ju R, Dai J. Is low body mass index a risk factor for semen quality? A PRISMA-compliant meta-analysis. Medicine (Baltimore). 2019 Aug; 98(32): e16677. doi: 10.1097/MD.0000000000016677.

7. Ilacqua A, Izzo G, Emerenziani GP, Baldari C, Aversa A. Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol. 2018 Nov 26; 16: 115. doi: 10.1186/s12958-018-0436-9.

8. Harlev A, Agarwal A, Gunes SO, Shetty A, Plessis SS. Smoking and male infertility: an evidence-based review. World J Mens Health. 2015 Dec; 33(3): 143-60. doi: 10.5534/ wjmh.2015.33.3.143. Epub 2015 Dec 23.

9. Deng Z, Chen F, Zhang M, et al. Association between air pollution and sperm quality: a systematic review and meta-analysis. Environ Pollut.

2016 Jan; 208(Pt B): 663-9. doi: 10.1016/j. envpol.2015.10.044.

10. Montano L, Bergamo P, Andreassi MG, Lorenzetti S. The role of human semen as an early and reliable tool of environmental impact assessment on human health. In: Meccariello R, Chianese R, Eds. (Internet). InTech; 2018. Available on: http://dx.doi.org/10.5772/68063.

11. Kumar N, Singh AK. Impact of environmental factors on human semen quality and male fertility: a narrative review. Environ Sci Eur. 2022; 34(1): 6. doi: 10.1186/s12302-021-00585-w.

12. World Health Organization (WHO). Regional Office for Europe‎. Human biomonitoring: facts and figures. World Health Organization. Regional Office for Europe; 2015. Available on: https://apps.who.int/iris/handle/10665/164588.

13. Longo V, Forleo A, Giampetruzzi L, Siciliano P, Capone S. Human biomonitoring of environmental and occupational exposures by GC-MS and gas sensor systems: a systematic review. Int J Environ Res Public Health. 2021 Sep 29; 18(19): 10236. doi: 10.3390/ijerph181910236.

14. Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021 Mar 29; 372: n160. doi:

10.1136/bmj.n160.

15. Caporossi L, Alteri A, Campo G, et al. Cross sectional study on exposure to BPA and phthalates and semen parameters in men attending a fertility center. Int J Environ Res Public Health. 2020 Jan 13; 17(2): 489. doi: 10.3390/ijerph17020489.

16. Bergamo P, Volpe MG, Lorenzetti S, et al. Human semen as an early, sensitive biomarker of highly polluted living environment in healthy men: A pilot biomonitoring study on trace elements in blood and semen and their relationship with sperm quality and RedOx status. Reprod Toxicol. 2016 Dec; 66: 1-9. doi: 10.1016/j.

reprotox.2016.07.018. Epub 2016 Sep 1.

17. Goldstone AE, Alexandra E, Chen Z, Perry M, Kannan K, Louis GM. Urinary bisphenol A and semen quality, the LIFE Study. Reprod Toxicol. 2015 Jan; 51: 7-13. doi: 10.1016/j.

reprotox.2014.11.003. Epub 2014 Nov 11.

18. Wirth J, Rossano MG, Potter R, et al. A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Syst Biol Reprod Med. 2008 May-Jun; 54(3): 143-54. doi: 10.1080/19396360802055921.

19. Perry M J, Scott A V, Dana BB, Xiping X. Environmental pyrethroid and organophosphorus insecticide exposures and sperm concentration. Reprod Toxicol. 2007 Jan; 23(1): 113-8. doi:

10.1016/j.reprotox.2006.08.005. Epub 2006 Sep 1.

20. Mumford SL, Sungduk K, Zhen C, GoreLangton R E, Barr D B, Louis GM. Persistent organic pollutants and semen quality: The LIFE Study. Chemosphere. 2015 Sep; 135: 427-35. doi: 10.1016/j.chemosphere.2014.11.015. Epub 2014 Nov 28.

21. Jeng HA, Pan CH, Lin WY, et al. Biomonitoring of polycyclic aromatic hydrocarbons from coke oven emissions and reproductive toxicity in nonsmoking workers. J Hazard Mater.

2013 Jan 15; 244-245: 436-43. doi: 10.1016/j. jhazmat.2012.11.008. Epub 2012 Nov 26.

22. McDiarmid MA, Engelhardt SM, Oliver M, et al. Biological monitoring and surveillance results of gulf war i veterans exposed to depleted uranium. Int Arch Occup Environ Health. 2006 Jan; 79(1): 11-21. doi: 10.1007/s00420-005-0006-2. Epub 2005 Aug 2.

23. McDiarmid MA, Gucer P, Centeno JA, Todorov T, Squibb KS. Semen uranium concentrations in depleted uranium exposed gulf war veterans: correlations with other body fluid matrices. Biol Trace Elem Res. 2019 Jul; 190(1): 45-51. doi: 10.1007/s12011-018-1527-3. Epub 2018 Oct 6.

24. Louis GM, Chen Z, Kim S, Sapra KJ, Bae J, Kannan K. Urinary concentrations of benzophenonetype ultraviolet light filters and semen quality. Fertil Steril. 2015 Oct; 104(4): 989-96. doi: 10.1016/j.fertnstert.2015.07.1129. Epub 2015 Aug 5.

25. Li CJ, Yeh CY, Chen RY, Tzeng CR, Han BC, Chien LC. Biomonitoring of blood heavy metals and reproductive hormone level related to low semen quality. J Hazard Mater. 2015 Dec 30; 300: 815-22. doi: 10.1016/j.jhazmat.2015.08.027. Epub 2015 Aug 20.

26. Zhang YH, Zheng LX, Chen BH. Phthalate exposure and human semen quality in Shanghai: A cross-sectional study. Biomed Environ Sci. 2006 Jun; 19(3): 205-9.

27. Shih TS, Hsieh AT, Liao GD, Chen YH, Liou SH. Haematological and spermatotoxic effects of Ethylene Glycol Monomethyl Ether in copper clad laminate factories. Occup Environ Med. 2000 May; 57(5): 348-52. doi: 10.1136/ oem.57.5.348.

28. Song X, Tang S, Zhu H, et al. Biomonitoring PFAAs in blood and semen samples: investigation of a potential link between PFAAs Exposure and semen mobility in china. Environ Int. 2018 Apr; 113: 50-4. doi: 10.1016/j. envint.2018.01.010. Epub 2018 Feb 6.

29. Jurewicz J, Radwan M, Sobala W, et al. Exposure to widespread environmental endocrine disrupting chemicals and human sperm sex ratio. Environ Pollut. 2016 Jun; 213: 732-40. doi: 10.1016/j.envpol.2016.02.008. Epub 2016 Mar 28.

30. Multigner L, Ben Brik E, Arnaud I, Haguenoer JM, Jouannet P, Auger J, et al Glycol Ethers and semen quality: a cross-sectional study among male workers in the Paris municipality. Occup Environ Med. 2007 Jul; 64(7): 467–73. doi:

10.1136/oem.2005.023952. Epub 2007 Mar 1.

31. Mendiola J, Moreno JM, Roca M, et al. Relationships between heavy metal concentrations in three different body fluids and male reproductive parameters: a pilot study. Environ Health. 2011 Jan 19; 10(1): 6. doi: 10.1186/1476-069X-10-6.

32. Duydu Y, Başaran N, Üstündağ A, et al. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey. Arch Toxicol. 2011 Jun; 85(6): 589-600. doi: 10.1007/s00204-011-0692-3. Epub 2011 Mar 19.

33. Bonde J P, Joffe M, Apostoli P, et al. Sperm count and chromatin structure in men exposed to inorganic lead: lowest adverse effect levels. Occup Environ Med. 2002 Apr; 59(4): 234-42.

doi: 10.1136/oem.59.4.234.

34. Onul NM, Biletska EM, Stus VP, Polion MY. The role of lead in the etiopathogenesis of male fertility reduction. Wiad Lek. 2018; 71(6): 115560.

35. Engelsman M, Banks APW, He C, et al. An exploratory analysis of firefighter reproduction through survey data and biomonitoring. Int J Environ Res Public Health. 2023 Apr 11; 20(8): 5472. doi: 10.3390/ijerph20085472.

36. Singh S, Li SS. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci. 2012; 13(8): 10143-53. doi: 10.3390/ ijms130810143. Epub 2012 Aug 15.

37. Ho SM, Cheong A, Adgent MA, et al. Environmental factors, epigenetics, and developmental origin of reproductive disorder§§§s. Reprod Toxicol. 2017 Mar; 68: 85-104. doi: 10.1016/j.

reprotox.2016.07.011. Epub 2016 Jul 12.

38. D’Angelo S., Scafuro M., Meccariello R. BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr Metab Immune Disord Drug Targets. 2019; 19(5): 594-604. doi: 10.21 74/1871530319666190101120119.

39. Patisaul H. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol. 2020

Jan; 3(1): e12730. doi: 10.1111/jne.12730. Epub 2019 May 26.

40. Santoro A, Chianese R., Troisi J, et al. Neurotoxic and reproductive effects of BPA. Curr Neuropharmacol. 2019; 17(12): 1109-32. doi: 10.2174/1570159X17666190726112101.

41. Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. Environ Int. 2017 Feb; 99: 43-54. doi: 10.1016/j.envint.2016.11.014. Epub 2016 Nov 18.

Downloads

Published

2025-08-04

Issue

Section

Original research

How to Cite

1.
Cofone L, Pindinello I, D'Ancona G, et al. Human semen quality and environmental and occupational exposure to pollutants: A systematic review. Ann Ig. 2025;35(6):660-669. doi:10.7416/ai.2023.2581