Advances and innovations in ultrasound-based tumor management: current applications and emerging directions

Advances and innovations in ultrasound-based tumor management: current applications and emerging directions

Authors

  • Li Rui Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
  • Qi Min Department of Radiology, Qingdao Municipal Hospital, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
  • Meng Xin Department of Ultrasound, Qingdao Eighth People’s Hospital, Shandong Second Medical University, Shandong, China
  • Chen Yujun Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
  • Gu Yihong Department of Vascular Ultrasonography, Xuanwu Hospital, Capital Medical University, Beijing, China
  • Yan Ruilong Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
  • Wang Bo Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
  • Yu Tengfei Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Keywords:

Ultrasound, Tumor, Molecular imaging, SDT, Thermal therapy, Immunoregulation

Abstract

As a crucial medical imaging modality, ultrasonography has emerged as a pivotal tool for tumor diagnosis and treatment owing to its non-invasive nature, real-time imaging capability, and superior resolution. Recent technological advancements have demonstrated unique advantages in early tumor screening, staging, and localization. Contrast-enhanced ultrasound (CEUS), utilizing microbubbles (MBs) and nanobubbles (NBs) to target vascular biomarkers, significantly enhances tumor visualization and demonstrates high sensitivity in molecular imaging. Multimodal ultrasound (MU), incorporating techniques such as elastography and automated breast volume scanning (ABVS), achieves improved diagnostic accuracy when combined with MRI/CT. The applications of ultrasound in localized and systemic tumor therapy have expanded considerably. High-intensity focused ultrasound (HIFU) enables thermal ablation of solid tumors, while low-intensity focused ultrasound (LIFU) facilitates sonodynamic therapy (SDT) through reactive oxygen species (ROS) generation mediated by sonosensitizers. Ultrasound-assisted drug delivery systems (US-DDS) leverage MB/NB cavitation effects to enhance chemotherapeutic agent delivery efficiency, overcome biological barriers, including the blood-brain barrier, and modulate immune responses. These technological breakthroughs have provided novel therapeutic options for cancer patients, garnering significant clinical interest. This review systematically examines current applications of ultrasound imaging and therapy in oncology, evaluates its potential clinical value, analyzes existing technical limitations, and discusses future development prospects. The article aims to provide innovative perspectives for tumor diagnosis and treatment while offering references for clinical practice.

References

1. Barta JA, Powell CA, Wisnivesky JP (2019) Global epidemiology of lung cancer. Ann Glob Health 85. https://doi.org/10.5334/aogh.2419

2. Webb PM, Jordan SJ (2024) Global epidemiology of epithelial ovarian cancer. Nat Rev Clin Oncol 21:389–400. https://doi.org/10.1038/s41571-024-00881-3

3. Kratzer W, Hanle MM, Stock KF, Wechsler JG, Worlicek H (2023) [Ultrasound diagnostics: differentiated vision - upgrading - better reimbursement]. Dtsch Med Wochenschr 148:577–582. https://doi.org/10.1055/a-2013-8977

4. Yan L, Liang Z, Zhang H, Zhang G, Zheng W, Han C, Yu D, Zhang H, Xie X, Liu C et al (2024) A domain knowledge-based interpretable deep learning system for improving clinical breast ultrasound diagnosis. Commun Med (Lond) 4:90. https://doi.org/10.1038/s43856-024-00518-7

5. Prada F, Ciocca R, Corradino N, Gionso M, Raspagliesi L, Vetrano IG, Doniselli F, Del Bene M, DiMeco F (2022) Multiparametric intraoperative ultrasound in oncological neurosurgery: A pictorial essay. Front Neurosci 16:881661. https://doi.org/10.3389/fnins.2022.881661

6. Hu J, Zhou ZY, Ran HL, Yuan XC, Zeng X, Zhang ZY (2020) Diagnosis of liver tumors by multimodal ultrasound imaging. Med (Baltim) 99:e21652. https://doi.org/10.1097/MD.0000000000021652

7. Ma Q, Shen C, Gao Y, Duan Y, Li W, Lu G, Qin X, Zhang C, Wang J (2023) Radiomics analysis of breast lesions in combination with coronal plane of ABVS and strain elastography. Breast Cancer (Dove Med Press) 15:381–390. https://doi.org/10.2147/BCTT.S410356

8. Avesani G, Panico C, Nougaret S, Woitek R, Gui B, Sala E (2024) ESR essentials: characterisation and staging of adnexal masses with MRI and CT-practice recommendations by ESUR. Eur Radiol 34:7673–7689. https://doi.org/10.1007/s00330-024-10817-1

9. Zhang G, Ye HR, Sun Y, Guo ZZ (2022) Ultrasound molecular imaging and its applications in cancer diagnosis and therapy. ACS Sens 7:2857–2864. https://doi.org/10.1021/acssensors.2c01468

10. Szablowski JO, Bar-Zion A, Shapiro MG (2019) Achieving Spatial and molecular specificity with Ultrasound-Targeted biomolecular nanotherapeutics. Acc Chem Res 52:2427–2434. https://doi.org/10.1021/acs.accounts.9b00277

11. Zhang H, Wang J, Guo R (2020) Application value of color doppler ultrasound and ultrasound contrast in the differential diagnosis of ovarian tumor. Pak J Med Sci 36:80–84. https://doi.org/10.12669/pjms.36.2.847

12. Battistella A, Partelli S, Andreasi V, Marinoni I, Palumbo D, Tacelli M, Lena MS, Muffatti F, Mushtaq J, Capurso G et al (2022) Preoperative assessment of microvessel density in nonfunctioning pancreatic neuroendocrine tumors (NF-PanNETs). Surgery 172:1236–1244. https://doi.org/10.1016/j.surg.2022.06.017

13. Hao Y, Sun Y, Lei Y, Zhao H, Cui L (2021) Percutaneous Sonazoid-enhanced ultrasonography combined with in vitro verification for detection and characterization of Sentinel lymph nodes in early breast cancer. Eur Radiol 31:5894–5901. https://doi.org/10.1007/s00330-020-07639-2

14. Li Q, Nie F, Yang D, Dong T, Liu T (2023) Contrast-enhanced ultrasound (CEUS) - A new tool for evaluating blood supply in primary peripheral lung cancer. Clin Hemorheol Microcirc 83:61–68. https://doi.org/10.3233/CH-221484

15. McGrath S, Shen YJ, Aragaki M, Motooka Y, Koga T, Gregor A, Bernards N, Cherin E, Demore CEM, Yasufuku K, Matsuura N (2024) Imaging microbubbles with Contrast-Enhanced endobronchial ultrasound. Ultrasound Med Biol 50:28–38. https://doi.org/10.1016/j.ultrasmedbio.2023.08.020

16. Jiang X, Chen J, Gu FF, Li ZR, Song YS, Long JJ, Zhang SZ, Xu TT, Tang YJ, Gu JY, Fang XM (2024) Evaluating the efficacy of percutaneous puncture biopsy guided by contrast-enhanced ultrasound for peripheral pulmonary lesions. World J Clin Cases 12:3791–3799. https://doi.org/10.12998/wjcc.v12.i19.3791

17. Hu Z, Bachawal SV, Li X, Wang H, Wilson KE, Li P, Paulmurugan R (2022) Detection and characterization of Sentinel lymph node by ultrasound molecular imaging with B7-H3-Targeted microbubbles in orthotopic breast cancer model in mice. Mol Imaging Biol 24:333–340. https://doi.org/10.1007/s11307-021-01680-3

18. Frinking P, Segers T, Luan Y, Tranquart F (2020) Three decades of ultrasound contrast agents: A review of the past, present and future improvements. Ultrasound Med Biol 46:892–908. https://doi.org/10.1016/j.ultrasmedbio.2019.12.008

19. Dasgupta A, Sun T, Palomba R, Rama E, Zhang Y, Power C, Moeckel D, Liu M, Sarode A, Weiler M et al (2023) Nonspherical ultrasound microbubbles. Proc Natl Acad Sci U S A 120:e2218847120. https://doi.org/10.1073/pnas.2218847120

20. Nittayacharn P, Abenojar E, Cooley MB, Berg FM, Counil C, Sojahrood AJ, Khan MS, Yang C, Berndl E, Golczak M et al (2024) Efficient ultrasound-mediated drug delivery to orthotopic liver tumors - Direct comparison of doxorubicin-loaded nanobubbles and microbubbles. J Control Release 367:135–147. https://doi.org/10.1016/j.jconrel.2024.01.028

21. Han X, Wang F, Shen J, Chen S, Xiao P, Zhu Y, Yi W, Zhao Z, Cai Z, Cui W, Bai D (2024) Ultrasound nanobubble coupling agent for effective noninvasive Deep-Layer drug delivery. Adv Mater 36:e2306993. https://doi.org/10.1002/adma.202306993

22. Xu Y, Lu Q, Sun L, Feng S, Nie Y, Ning X, Lu M (2020) Nanosized Phase-Changeable sonocyte for promoting ultrasound assessment. Small 16:e2002950. https://doi.org/10.1002/smll.202002950

23. Oeffinger BE, Wheatley MA (2004) Development and characterization of a nano-scale contrast agent. Ultrasonics 42:343–347. https://doi.org/10.1016/j.ultras.2003.11.011

24. Wheatley MA, Forsberg F, Dube N, Patel M, Oeffinger BE (2006) Surfactant-stabilized contrast agent on the nanoscale for diagnostic ultrasound imaging. Ultrasound Med Biol 32:83–93. https://doi.org/10.1016/j.ultrasmedbio.2005.08.009

25. Rapoport N, Gao Z, Kennedy A (2007) Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–1106. https://doi.org/10.1093/jnci/djm043

26. Wang Y, Li X, Zhou Y, Huang P, Xu Y (2010) Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm 384:148–153. https://doi.org/10.1016/j.ijpharm.2009.09.027

27. Xu JS, Huang J, Qin R, Hinkle GH, Povoski SP, Martin EW, Xu RX (2010) Synthesizing and binding dual-mode Poly (lactic-co-glycolic acid) (PLGA) nanobubbles for cancer targeting and imaging. Biomaterials 31:1716–1722. https://doi.org/10.1016/j.biomaterials.2009.11.052

28. Wang CH, Huang YF, Yeh CK (2011) Aptamer-conjugated nanobubbles for targeted ultrasound molecular imaging. Langmuir 27:6971–6976. https://doi.org/10.1021/la2011259

29. Yin T, Wang P, Zheng R, Zheng B, Cheng D, Zhang X, Shuai X (2012) Nanobubbles for enhanced ultrasound imaging of tumors. Int J Nanomed 7:895–904. https://doi.org/10.2147/IJN.S28830

30. Smeenge M, Tranquart F, Mannaerts CK, de Reijke TM, van de Vijver MJ, Laguna MP, Pochon S, de la Rosette J, Wijkstra H (2017) First-in-Human ultrasound molecular imaging with a VEGFR2-Specific ultrasound molecular contrast agent (BR55) in prostate cancer: A safety and feasibility pilot study. Invest Radiol 52:419–427. https://doi.org/10.1097/RLI.0000000000000362

31. Bzyl J, Palmowski M, Rix A, Arns S, Hyvelin JM, Pochon S, Ehling J, Schrading S, Kiessling F, Lederle W (2013) The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 23:468–475. https://doi.org/10.1007/s00330-012-2594-z

32. Baron Toaldo M, Salvatore V, Marinelli S, Palama C, Milazzo M, Croci L, Venerandi L, Cipone M, Bolondi L, Piscaglia F (2015) Use of VEGFR-2 targeted ultrasound contrast agent for the early evaluation of response to Sorafenib in a mouse model of hepatocellular carcinoma. Mol Imaging Biol 17:29–37. https://doi.org/10.1007/s11307-014-0764-x

33. Wang Y, De Leon AC, Perera R, Abenojar E, Gopalakrishnan R, Basilion JP, Wang X, Exner AA (2021) Molecular imaging of orthotopic prostate cancer with nanobubble ultrasound contrast agents targeted to PSMA. Sci Rep 11:4726. https://doi.org/10.1038/s41598-021-84072-5

34. Yan J, Yin M, Foster FS, Demore CEM (2020) Tumor contrast imaging with gas vesicles by circumventing the reticuloendothelial system. Ultrasound Med Biol 46:359–368. https://doi.org/10.1016/j.ultrasmedbio.2019.09.009

35. Wang G, Song L, Hou X, Kala S, Wong KF, Tang L, Dai Y, Sun L (2020) Surface-modified GVs as nanosized contrast agents for molecular ultrasound imaging of tumor. Biomaterials 236:119803. https://doi.org/10.1016/j.biomaterials.2020.119803

36. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20:69–84. https://doi.org/10.1038/s41580-018-0080-4

37. Taki M, Abiko K, Ukita M, Murakami R, Yamanoi K, Yamaguchi K, Hamanishi J, Baba T, Matsumura N, Mandai M (2021) Tumor immune microenvironment during Epithelial-Mesenchymal transition. Clin Cancer Res 27:4669–4679. https://doi.org/10.1158/1078-0432.CCR-20-4459

38. Hao Y, Li Z, Luo J, Li L, Yan F (2023) Ultrasound molecular imaging of epithelial mesenchymal transition for evaluating tumor metastatic potential via targeted biosynthetic gas vesicles. Small 19(e2207940). https://doi.org/10.1002/smll.202207940

39. Kumar US, Natarajan A, Massoud TF, Paulmurugan R (2022) FN3 linked nanobubbles as a targeted contrast agent for US imaging of cancer-associated human PD-L1. J Control Release 346:317–327. https://doi.org/10.1016/j.jconrel.2022.04.030

40. Lynn JG, Zwemer RL, Chick AJ, Miller AE (1942) A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 26:179–193. https://doi.org/10.1085/jgp.26.2.179

41. Sheybani ND, Witter AR, Thim EA, Yagita H, Bullock TNJ, Price RJ (2020) Combination of thermally ablative focused ultrasound with gemcitabine controls breast cancer via adaptive immunity. J Immunother Cancer 8. https://doi.org/10.1136/jitc-2020-001008

42. Pi X, Liu J, Ren S, Zhu L, Li B, Zhang B (2024) Research progress in ultrasound and its assistance treatment to reduce food allergenicity: mechanisms, influence factor, application and prospect. Int J Biol Macromol 278:134687. https://doi.org/10.1016/j.ijbiomac.2024.134687

43. Qian KY, Song Y, Yan X, Dong L, Xue J, Xu Y, Wang B, Cao B, Hou Q, Peng W et al (2020) Injectable ferrimagnetic silk fibroin hydrogel for magnetic hyperthermia ablation of deep tumor. Biomaterials 259:120299. https://doi.org/10.1016/j.biomaterials.2020.120299

44. Fry WJ, Fry FJ (1960) Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron ME-7 166–181. https://doi.org/10.1109/iret-me.1960.5008041

45. Ito H, Yamamoto K, Fukutake S, Odo T, Kamei T (2020) Two-year Follow-up results of magnetic resonance Imaging-guided focused ultrasound unilateral thalamotomy for Medication-refractory essential tremor. Intern Med 59:2481–2483. https://doi.org/10.2169/internalmedicine.4360-19

46. Yiannakou M, Menikou G, Yiallouras C, Damianou C (2017) MRI-guided coupling for a focused ultrasound system using a top-to-bottom propagation. J Ther Ultrasound 5:6. https://doi.org/10.1186/s40349-017-0087-x

47. Chaussy C, Thuroff S (2003) The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection. Curr Urol Rep 4:248–252. https://doi.org/10.1007/s11934-003-0077-0

48. Beerlage HP, Thuroff S, Debruyne FM, Chaussy C, de la Rosette JJ (1999) Transrectal high-intensity focused ultrasound using the ablatherm device in the treatment of localized prostate carcinoma. Urology 54:273–277. https://doi.org/10.1016/s0090-4295(99)00104-1

49. Gelet A, Chapelon JY, Bouvier R, Souchon R, Pangaud C, Abdelrahim AF, Cathignol D, Dubernard JM (1996) Treatment of prostate cancer with transrectal focused ultrasound: early clinical experience. Eur Urol 29:174–183

50. Chaussy C, Thuroff S (2000) High-intensity focused ultrasound in prostate cancer: results after 3 years. Mol Urol 4:179–182

51. Rebillard X, Gelet A, Davin JL, Soulie M, Prapotnich D, Cathelineau X, Rozet F, Vallancien G (2005) Transrectal high-intensity focused ultrasound in the treatment of localized prostate cancer. J Endourol 19:693–701. https://doi.org/10.1089/end.2005.19.693

52. Jung SE, Cho SH, Jang JH, Han JY (2011) High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: complications. Abdom Imaging 36:185–195. https://doi.org/10.1007/s00261-010-9628-2

53. Xiong LL, Hwang JH, Huang XB, Yao SS, He CJ, Ge XH, Ge HY, Wang XF (2009) Early clinical experience using high intensity focused ultrasound for palliation of inoperable pancreatic cancer. JOP 10:123–129 doi

54. Chen Y, Du M, Yuan Z, Chen Z, Yan F (2022) Spatiotemporal control of engineered bacteria to express interferon-gamma by focused ultrasound for tumor immunotherapy. Nat Commun 13:4468. https://doi.org/10.1038/s41467-022-31932-x

55. Yumita N, Nishigaki R, Umemura K, Umemura S (1989) Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res 80:219–222. https://doi.org/10.1111/j.1349-7006.1989.tb02295.x

56. Liu P, Yang T-y, Li Y, Guo J, Li S-L, Chen H, Liu Y (2023) Nanomaterials-based sonosensitizers: from exemplary design towards purposeful improvement. Mater Chem Front. doi

57. Brien O W.D. (1986) Biological effects of ultrasound: rationale for the measurement of selected ultrasonic output quantities. Echocardiography 3. doi

58. Suo D, Govind B, Zhang S, Jing Y (2017) Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound. 2017 IEEE International Ultrasonics Symposium (IUS), 1–4. doi

59. Didenko YT, McNamara WB, Suslick KS (1999) Hot spot conditions during cavitation in water. J Am Chem Soc 121:5817–5818

60. Riesz P, Berdahl DA, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252

61. Nowak KM, Schwartz MR, Breza VR, Price RJ (2022) Sonodynamic therapy: rapid progress and new opportunities for non-invasive tumor cell killing with sound. Cancer Lett 532:215592. https://doi.org/10.1016/j.canlet.2022.215592

62. Zhang Y, Zhang X, Yang H, Yu L, Xu Y, Sharma A, Yin P, Li X, Kim JS, Sun Y (2021) Advanced biotechnology-assisted precise sonodynamic therapy. Chem Soc Rev 50:11227–11248. https://doi.org/10.1039/d1cs00403d

63. Yin Y, Jiang X, Sun L, Li H, Su C, Zhang Y, Xu G, Li X, Zhao C, Chen Y et al (2021) Continuous inertial cavitation evokes massive ROS for reinforcing sonodynamic therapy and Immunogenic cell death against breast carcinoma. Nano Today 36:101009. https://doi.org/10.1016/j.nantod.2020.101009

64. Choi V, Rajora MA, Zheng G (2020) Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjugate chemistry. doi

65. Tang Y, Ge L, Jiang L, Jiang X (2024) Pore-enhanced reactive oxygen species generation by using covalent organic frameworks for improving sonodynamic therapy of cancer. Nano Today 55:102166. https://doi.org/10.1016/j.nantod.2024.102166

66. Liao S, Cai M, Zhu R, Fu T, Du Y, Kong J, Zhang Y, Qu C, Dong X, Ni J, Yin X (2023) Antitumor effect of photodynamic therapy/sonodynamic therapy/Sono-Photodynamic therapy of Chlorin e6 and other applications. Mol Pharm 20:875–885. https://doi.org/10.1021/acs.molpharmaceut.2c00824

67. Zhang M, Yang D, Dong C, Huang H, Feng G, Chen Q, Zheng Y, Tang H, Chen Y, Jing X (2022) Two-Dimensional MXene-Originated in situ nanosonosensitizer generation for augmented and synergistic sonodynamic tumor nanotherapy. ACS Nano 16:9938–9952. https://doi.org/10.1021/acsnano.2c04630

68. Geng B, Hu J, Li Y, Feng S, Pan D, Feng L, Shen L (2022) Near-infrared phosphorescent carbon Dots for sonodynamic precision tumor therapy. Nat Commun 13:5735. https://doi.org/10.1038/s41467-022-33474-8

69. Gong Z, Dai Z (2021) Design and challenges of sonodynamic therapy system for cancer theranostics: from equipment to sensitizers. Adv Sci (Weinh) 8:2002178. https://doi.org/10.1002/advs.202002178

70. Lin X, Huang R, Huang Y, Wang K, Li H, Bao Y, Wu C, Zhang Y, Tian X, Wang X (2021) Nanosonosensitizer-Augmented sonodynamic therapy combined with checkpoint Blockade for cancer immunotherapy. Int J Nanomed 16:1889–1899. https://doi.org/10.2147/IJN.S290796

71. Zhou M, Yuan M, Jin Y, Zhou Q, Yu Y, Li J, Dai X, Zheng X, Yu H, Wang W (2023) Vitamin B2-Based ferroptosis promoter for Sono‐Enhanced nanocatalytic therapy of Triple‐Negative breast cancer. Adv Funct Mater 33. doi

72. Wang L, Li G, Cao L, Dong Y, Wang Y, Wang S, Li Y, Guo X, Zhang Y, Sun F et al (2021) An ultrasound-driven immune-boosting molecular machine for systemic tumor suppression. Sci Adv 7:eabj4796. https://doi.org/10.1126/sciadv.abj4796

73. Yang S, Wang X, He P, Xu A, Wang G, Duan J, Shi Y, Ding G (2021) Graphene quantum Dots with pyrrole N and pyridine N: superior reactive oxygen species generation efficiency for Metal-Free sonodynamic tumor therapy. Small 17:e2004867. https://doi.org/10.1002/smll.202004867

74. Zhang Y, Zhao J, Zhang L, Zhao Y, Zhang Y, Cheng L, Wang D, Liu C, Zhang M, Fan K, Zhang M (2023) A cascade nanoreactor for enhancing sonodynamic therapy on colorectal cancer via synergistic ROS augment and autophagy blockage. Nano Today 49:101798. https://doi.org/10.1016/j.nantod.2023.101798

75. Anderson NM, Simon MC (2020) The tumor microenvironment. Curr Biol 30:R921–R925. https://doi.org/10.1016/j.cub.2020.06.081

76. Delaney LJ, Isguven S, Eisenbrey JR, Hickok NJ, Forsberg F (2022) Making waves: how ultrasound-targeted drug delivery is changing pharmaceutical approaches. Mater Adv 3:3023–3040. https://doi.org/10.1039/d1ma01197a

77. Gourevich D, Volovick A, Dogadkin O, Wang L, Mulvana H, Medan Y, Melzer A, Cochran S (2015) In vitro investigation of the individual contributions of Ultrasound-Induced stable and inertial cavitation in targeted drug delivery. Ultrasound Med Biol 41:1853–1864. https://doi.org/10.1016/j.ultrasmedbio.2015.03.016

78. Escoffre JM, Sekkat N, Oujagir E, Bodard S, Mousset C, Presset A, Chautard R, Ayoub J, Lecomte T, Bouakaz A (2022) Delivery of anti-cancer drugs using microbubble-assisted ultrasound in digestive oncology: from preclinical to clinical studies. Expert Opin Drug Deliv 19:421–433. https://doi.org/10.1080/17425247.2022.2061459

79. Bressand D, Novell A, Girault A, Raoul W, Fromont-Hankard G, Escoffre JM, Lecomte T, Bouakaz A (2019) Enhancing Nab-Paclitaxel delivery using Microbubble-Assisted ultrasound in a pancreatic cancer model. Mol Pharm 16:3814–3822. https://doi.org/10.1021/acs.molpharmaceut.9b00416

80. Wang LY, Zheng SS (2019) Advances in low-frequency ultrasound combined with microbubbles in targeted tumor therapy. J Zhejiang Univ Sci B 20:291–299. https://doi.org/10.1631/jzus.B1800508

81. Michon S, Rodier F, Yu FTH (2022) Targeted Anti-Cancer provascular therapy using ultrasound, microbubbles, and nitrite to increase radiotherapy efficacy. Bioconjug Chem 33:1093–1105. https://doi.org/10.1021/acs.bioconjchem.1c00510

82. Omata D, Unga J, Suzuki R, Maruyama K (2020) Lipid-based microbubbles and ultrasound for therapeutic application. Adv Drug Deliv Rev 154–155:236–244. https://doi.org/10.1016/j.addr.2020.07.005

83. Chen HK, Zhang SM, Chang JL, Chen HC, Lin YC, Shih CP, Sytwu HK, Fang MC, Lin YY, Kuo CY et al (2018) Insonation of systemically delivered Cisplatin-Loaded microbubbles significantly attenuates nephrotoxicity of chemotherapy in experimental models of head and neck cancer. Cancers (Basel) 10. https://doi.org/10.3390/cancers10090311

84. Liang X, Xu Y, Gao C, Zhou Y, Zhang N, Dai Z (2018) Ultrasound contrast agent microbubbles with ultrahigh loading capacity of camptothecin and Floxuridine for enhancing tumor accumulation and combined chemotherapeutic efficacy. NPG Asia Mater 10:761–774

85. Logan KA, Nesbitt H, Callan B, Gao J, Taylor TM, Love MA, McHale M, A.P., and, Callan JF (2021) Synthesis of a Gemcitabine-Modified phospholipid and its subsequent incorporation into a single microbubble formulation loaded with Paclitaxel for the treatment of pancreatic cancer using Ultrasound-Targeted microbubble destruction. European journal of pharmaceutics and biopharmaceutics. official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V. doi

86. Hernot S, Klibanov AL (2008) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60 10:1153–1166

87. Rychak JJ, Klibanov AL (2014) Nucleic acid delivery with microbubbles and ultrasound. Adv Drug Deliv Rev 72:82–93

88. Chen X, Zhang X, Qian Y, Xia E, Wang Y, Zhou Q (2022) Ultrasound-targeted microbubble destruction-mediated miR-144-5p overexpression enhances the anti-tumor effect of Paclitaxel on thyroid carcinoma by targeting STON2. Cell Cycle 21:1058–1076. https://doi.org/10.1080/15384101.2022.2040778

89. Meng L, Yuan S, Zhu L, ShangGuan Z, Zhao R (2019) Ultrasound-microbubbles-mediated microRNA-449a inhibits lung cancer cell growth via the regulation of Notch1. Onco Targets Ther 12:7437–7450. https://doi.org/10.2147/OTT.S217021

90. Liufu C, Li Y, Tu J, Zhang H, Yu J, Wang Y, Huang P, Chen Z (2019) Echogenic pegylated PEI-Loaded microbubble as efficient gene delivery system. Int J Nanomed 14:8923–8941. https://doi.org/10.2147/IJN.S217338

91. Zhao C, Ma L, Luo Y, Li W, Xiao M, Zhu Q, Jiang Y (2021) In vivo visualization and characterization of inflamed intestinal wall: the exploration of targeted microbubbles in assessing NF-kappaB expression. J Cell Mol Med 25:8973–8984. https://doi.org/10.1111/jcmm.16858

92. Thomas E, Menon JU, Owen J, Skaripa-Koukelli I, Wallington S, Gray M, Mannaris C, Kersemans V, Allen D, Kinchesh P et al (2019) Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy. Theranostics 9:5595–5609. https://doi.org/10.7150/thno.34669

93. Yuan H, Hu H, Sun J, Shi M, Yu H, Li C, Sun YU, Yang Z, Hoffman RM (2018) Ultrasound microbubble delivery targeting intraplaque neovascularization inhibits atherosclerotic plaque in an APOE-deficient mouse model. Vivo 32:1025–1032. https://doi.org/10.21873/invivo.11342

94. Fix SM, Borden MA, Dayton PA (2015) Therapeutic gas delivery via microbubbles and liposomes. J Control Release 209:139–149. https://doi.org/10.1016/j.jconrel.2015.04.027

95. Vaidya PB, Oeffinger BE, Patel R, Lacerda Q, Powell J, Eisenbrey JR, Wheatley MA (2021) Shaping the synthesis of surfactant-stabilized oxygen microbubbles to accommodate encapsulated drug. Colloids Surf B Biointerfaces 208:112049. https://doi.org/10.1016/j.colsurfb.2021.112049

96. Kwan JJ, Kaya M, Borden MA, Dayton PA (2012) Theranostic oxygen delivery using ultrasound and microbubbles. Theranostics 2:1174–1184. https://doi.org/10.7150/thno.4410

97. Peng S, Song R, Lin Q, Zhang Y, Yang Y, Luo M, Zhong Z, Xu X, Lu L, Yao S, Zhang F (2021) A robust oxygen microbubble radiosensitizer for Iodine-125 brachytherapy. Adv Sci (Weinh) 8:2002567. https://doi.org/10.1002/advs.202002567

98. Delaney LJ, Ciraku L, Oeffinger BE, Wessner CE, Liu JB, Li J, Nam K, Forsberg F, Leeper DB, O’Kane P et al (2019) Breast cancer brain metastasis response to radiation after microbubble oxygen delivery in a murine model. J Ultrasound Med 38:3221–3228. https://doi.org/10.1002/jum.15031

99. Arvanitis CD, Ferraro GB, Jain RK (2020) The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 20:26–41. https://doi.org/10.1038/s41568-019-0205-x

100. Wei HJ, Upadhyayula PS, Pouliopoulos AN, Englander ZK, Zhang X, Jan CI, Guo J, Mela A, Zhang Z, Wang TJC et al (2021) Focused Ultrasound-Mediated Blood-Brain barrier opening increases delivery and efficacy of Etoposide for glioblastoma treatment. Int J Radiat Oncol Biol Phys 110:539–550. https://doi.org/10.1016/j.ijrobp.2020.12.019

101. Zhou H, Liu Y, Long X, Qiao Y, Lee J, Liu X, Zheng H, Zou C (2021) MR-guided blood-brain barrier opening induced by rapid short-pulse ultrasound in non-human primates. Quant Imaging Med Surg 11:2415–2427. https://doi.org/10.21037/qims-20-1047

102. Beccaria K, Sabbagh A, de Groot J, Canney M, Carpentier A, Heimberger AB (2021) Blood-brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. J Neurooncol 151:65–73. https://doi.org/10.1007/s11060-020-03425-8

103. Burgess A, Hynynen K (2016) Microbubble-Assisted ultrasound for drug delivery in the brain and central nervous system. Adv Exp Med Biol 880:293–308. https://doi.org/10.1007/978-3-319-22536-4_16

104. Arsiwala TA, Sprowls SA, Blethen KE, Adkins CE, Saralkar PA, Fladeland RA, Pentz W, Gabriele A, Kielkowski B, Mehta RI et al (2021) Ultrasound-mediated disruption of the blood tumor barrier for improved therapeutic delivery. Neoplasia 23:676–691. https://doi.org/10.1016/j.neo.2021.04.005

105. Lipsman N, Meng Y, Bethune AJ, Huang Y, Lam B, Masellis M, Herrmann N, Heyn C, Aubert I, Boutet A et al (2018) Blood-brain barrier opening in alzheimer’s disease using MR-guided focused ultrasound. Nat Commun 9:2336. https://doi.org/10.1038/s41467-018-04529-6

106. Ye D, Chen H (2022) Focused Ultrasound-Mediated intranasal brain drug delivery technique (FUSIN). Methods Mol Biol 2394:501–513. https://doi.org/10.1007/978-1-0716-1811-0_26

107. Su C, Ren X, Nie F, Li T, Lv W, Li H, Zhang Y (2021) Current advances in ultrasound-combined nanobubbles for cancer-targeted therapy: a review of the current status and future perspectives. RSC Adv 11:12915–12928. https://doi.org/10.1039/d0ra08727k

108. Thomas GPL, Khokhlova TD, Sapozhnikov OA, Khokhlova VA (2023) Enhancement of boiling histotripsy by steering the focus axially during the pulse delivery. IEEE Trans Ultrason Ferroelectr Freq Control 70:865–875. https://doi.org/10.1109/TUFFC.2023.3286759

109. Li F, Park TH, Sankin G, Gilchrist C, Liao D, Chan CU, Mao Z, Hoffman BD, Zhong P (2021) Mechanically induced integrin ligation mediates intracellular calcium signaling with single pulsating cavitation bubbles. Theranostics 11:6090–6104. https://doi.org/10.7150/thno.56813

110. Singh MP, Sethuraman SN, Miller C, Malayer J, Ranjan A (2021) Boiling histotripsy and in-situ CD40 stimulation improve the checkpoint Blockade therapy of poorly Immunogenic tumors. Theranostics 11:540–554. https://doi.org/10.7150/thno.49517

111. Mouratidis PXE, Costa M, Rivens I, Repasky EE, Ter Haar G (2021) Pulsed focused ultrasound can improve the anti-cancer effects of immune checkpoint inhibitors in murine pancreatic cancer. J R Soc Interface 18:20210266. https://doi.org/10.1098/rsif.2021.0266

112. Oliveira G, Wu CJ (2023) Dynamics and specificities of T cells in cancer immunotherapy. Nat Rev Cancer 23:295–316. https://doi.org/10.1038/s41568-023-00560-y

113. Lentz RW, Colton MD, Mitra SS, Messersmith WA (2021) Innate immune checkpoint inhibitors: the next breakthrough in medical oncology?? Mol Cancer Ther 20:961–974. https://doi.org/10.1158/1535-7163.MCT-21-0041

114. Iwanicki I, Wu LL, Flores-Guzman F, Sundland R, Viza-Gomes P, Nordgren R, Centner CS, Kandel JJ, Applebaum MA, Bader KB, Hernandez SL (2023) Histotripsy induces apoptosis and reduces hypoxia in a neuroblastoma xenograft model. Int J Hyperth 40:2222941. https://doi.org/10.1080/02656736.2023.2222941

115. Pepple AL, Guy JL, McGinnis R, Felsted AE, Song B, Hubbard R, Worlikar T, Garavaglia H, Dib J, Chao H et al (2023) Spatiotemporal local and abscopal cell death and immune responses to histotripsy focused ultrasound tumor ablation. Front Immunol 14:1012799. https://doi.org/10.3389/fimmu.2023.1012799

116. Qu S, Worlikar T, Felsted AE, Ganguly A, Beems MV, Hubbard R, Pepple AL, Kevelin AA, Garavaglia H, Dib J et al (2020) Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J Immunother Cancer 8. https://doi.org/10.1136/jitc-2019-000200

117. Singanamalla B, Singh AK, Saini AG (2020) Progressive EEG changes in CDKL-5 related epileptic encephalopathy. Indian J Pediatr 87:235–236. https://doi.org/10.1007/s12098-019-03169-y

118. Zheng J, Huang J, Zhang L, Wang M, Xu L, Dou X, Leng X, Fang M, Sun Y, Wang Z (2023) Drug-loaded microbubble delivery system to enhance PD-L1 Blockade immunotherapy with remodeling immune microenvironment. Biomater Res 27:9. https://doi.org/10.1186/s40824-023-00350-5

119. Bulner S, Prodeus A, Gariepy J, Hynynen K, Goertz DE (2019) Enhancing checkpoint inhibitor therapy with ultrasound stimulated microbubbles. Ultrasound Med Biol 45:500–512. https://doi.org/10.1016/j.ultrasmedbio.2018.10.002

120. Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, Bresler M, Burks SR, Frank JA (2017) Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A 114:E75–E84. https://doi.org/10.1073/pnas.1614777114

121. Wang J, Li Z, Pan M, Fiaz M, Hao Y, Yan Y, Sun L, Yan F (2022) Ultrasound-mediated blood-brain barrier opening: an effective drug delivery system for theranostics of brain diseases. Adv Drug Deliv Rev 190:114539. https://doi.org/10.1016/j.addr.2022.114539

122. Zhu L, Wang L, Liu Y, Xu D, Fang K, Guo Y (2018) CAIX aptamer-functionalized targeted nanobubbles for ultrasound molecular imaging of various tumors. Int J Nanomed 13:6481–6495. https://doi.org/10.2147/IJN.S176287

123. Hu Z, Yang B, Li T, Li J (2018) Thyroid cancer detection by ultrasound molecular imaging with SHP2-Targeted perfluorocarbon nanoparticles. Contrast Media Mol Imaging 2018(8710862). https://doi.org/10.1155/2018/8710862

124. Jugniot N, Massoud TF, Dahl JJ, Paulmurugan R (2022) Biomimetic nanobubbles for triple-negative breast cancer targeted ultrasound molecular imaging. J Nanobiotechnol 20:267. https://doi.org/10.1186/s12951-022-01484-9

125. Korpanty G, Sullivan LA, Smyth E, Carney DN, Brekken RA (2010) Molecular and clinical aspects of targeting the VEGF pathway in tumors. J Oncol 2010(652320). https://doi.org/10.1155/2010/652320

126. Zhou X, Guo L, Shi D, Meng D, Sun X, Shang M, Liu X, Zhao Y, Li J (2020) Ultrasound-responsive highly biocompatible nanodroplets loaded with doxorubicin for tumor imaging and treatment in vivo. Drug Deliv 27:469–481. https://doi.org/10.1080/10717544.2020.1739170

127. Yang H, Cai W, Lv W, Zhao P, Shen Y, Zhang L, Ma B, Yuan L, Duan Y, Yao K (2019) A new strategy for accurate targeted diagnosis and treatment of cutaneous malignant melanoma: dual-mode phase-change lipid nanodroplets as ultrasound contrast agents. Int J Nanomed 14:7079–7093. https://doi.org/10.2147/IJN.S207419

128. Barua A, Yellapa A, Bahr JM, Machado SA, Bitterman P, Basu S, Sharma S, Abramowicz JS (2015) VEGFR2-Targeted ultrasound imaging agent enhances the detection of ovarian tumors at early stage in laying hens, a preclinical model of spontaneous ovarian cancer. Ultrason Imaging 37:224–237. https://doi.org/10.1177/0161734614553603

129. Barua A, Yellapa A, Bahr JM, Adur MK, Utterback CW, Bitterman P, Basu S, Sharma S, Abramowicz JS (2015) Interleukin 16- (IL-16-) Targeted Ultrasound Imaging Agent Improves Detection of Ovarian Tumors in Laying Hens, a Preclinical Model of Spontaneous Ovarian Cancer. Biomed Res Int 2015, 567459. https://doi.org/10.1155/2015/567459

Downloads

Published

2025-08-12

Issue

Section

Review Articles / Systematic Reviews / Meta-Analyses

How to Cite

1.
Rui L, Min Q, Xin M, et al. Advances and innovations in ultrasound-based tumor management: current applications and emerging directions. Ultrasound J. 2025;17(1):40. Accessed January 30, 2026. https://www.mattioli1885journals.com/index.php/theultrasoundjournal/article/view/18149