Validation of a tele-robotic ultrasound system for abdomen and thyroid gland explorations: a comparison with standard ultrasound

Validation of a tele-robotic ultrasound system for abdomen and thyroid gland explorations: a comparison with standard ultrasound

Authors

  • Andreu Antolin Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.
  • Nuria Roson Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.
  • Marina Planes Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.
  • Mar Castillo Department of Radiology, Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.
  • Anna Alberti Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.
  • Manuel Escobar Department of Radiology, Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron, 119-129, 08035 Barcelona, Spain.

Keywords:

Tele-robotic ultrasound, Thyroid gland ultrasound, Abdominal ultrasound, Diagnostic ultrasound, Learning curve

Abstract

Background: Tele-robotic ultrasound (US) is a novel technique that might help overcome the current shortage of radiologists and poor access to radiologists and/or sonographers in remote or rural areas. Despite the promising results of this technology in the past two decades, there is still insufficient data about its advantages and limits, as well as the implementation in routine clinical practice and the learning curve for the user. The purpose of this prospective cohort-based study is to evaluate the performance of a 5G-based tele-robotic US system for abdominal and thyroid gland assessment in a cohort of healthy volunteers and outpatients, as well as assessing the learning curve and patient satisfaction.

Results: 64 participants (23 male, 41 female) were consecutively included during the recruitment period, for a total of 51 abdominal and 37 thyroid gland US studies. The mean age was 45.23 ± 18.90 years old, and the body mass index of the abdominal cohort was 22.97 ± 2.95 kg/m2. The learning curve estimated a minimum of 20 patients for abdominal tele-robotic US training, being almost non-existent in the thyroid gland cohort. All the variables showed no-statistical differences between standard US and tele-robotic US in the abdominal post-trained cohort except the visualization of the left kidney short axis and its interpolar length. Thyroid gland variables showed no statistical differences. The mean time of exploration for the tele-robotic US for abdomen and thyroid gland examinations were 18.33 ± 6.26 min and 4.64 ± 0.97 min respectively. Most participants (> 70%) felt comfortable and safe while being examined by the tele-robotic US.

Conclusion: Tele-robotic US achieves equal performance in comparison with the standard US when evaluating abdominal structures in this cohort of patients, as well as a relatively fast learning curve and good patient satisfaction. The performance when assessing the thyroid gland is almost identical to the standard US, which makes it a strong first candidate for a future clinical implementation.

References

1. Rawson JV, Rubin E, Smetherman D (2024) Short-term strategies for augmenting the national radiologist workforce. AJR Am J Roentgenol

222(6):e2430920. https:// doi. org/ 10. 2214/ AJR. 24. 30920

2. Ekeland AG, Bowes A, Flottorp S (2010) Effectiveness of telemedicine: a systematic review of reviews. Int J Med Inform 79(11):736–771. https:// doi. org/ 10. 1016/j. ijmed inf. 2010. 08. 006

3. Weinstein RS, Krupinski EA, Doarn CR (2018) Clinical examination component of telemedicine, telehealth, mHealth, and connected health medical practices. Med Clin North Am 102(3):533–544. https:// doi. org/ 10. 1016/j. mcna. 2018. 01. 002

4. Britton N, Miller MA, Safadi S, Siegel A, Levine AR, McCurdy MT (2019)

Tele-ultrasound in resource-limited settings: a systematic review. Front

Public Health 7:244. https:// doi. org/ 10. 3389/ fpubh. 2019. 00244

5. Adams SJ, Burbridge B, Obaid H, Stoneham G, Babyn P, Mendez I (2021) Telerobotic sonography for remote diagnostic imaging: narrative review of current developments and clinical applications. J Ultrasound Med

40(7):1287–1306. https:// doi. org/ 10. 1002/ jum. 15525

6. Cohen JF, Korevaar DA, Altman DG et al (2016) STARD 2015 guidelines for reporting diagnostic accuracy studies: explanation and elaboration. BMJ Open 6(11):e012799. https:// doi. org/ 10. 1136/ bmjop en- 2016- 01279

7. Tessler FN, Middleton WD, Grant EG et al (2017) ACR thyroid imaging, reporting and data system (TI-RADS): white paper of the ACR TI-RADS committee. J Am Coll Radiol 14(5):587–595. https:// doi. org/ 10. 1016/j. jacr.

2017. 01. 046

8. Zhang YQ, Yin HH, He T, Guo LH, Zhao CK, Xu HX (2022) Clinical application of a 5G-based telerobotic ultrasound system for thyroid examination on a rural island: a prospective study. Endocrine 76(3):620–634. https:// doi. org/ 10. 1007/ s12020- 022- 03011-0

9. Duan S, Liu L, Chen Y et al (2021) A 5G-powered robot-assisted teleultrasound diagnostic system in an intensive care unit. Crit Care 25(1):134. https:// doi. org/ 10. 1186/ s13054- 021- 03563-z

10. Duan B, Xiong L, Guan X, Fu Y, Zhang Y (2021) Tele-operated robotic ultrasound system for medical diagnosis. Biomed Signal Process Control

70:102900. https:// doi. org/ 10. 1016/j. bspc. 2021. 102900

11. Pierrot F, Dombre E, Dégoulange E et al (1999) Hippocrate: a safe robot arm for medical applications with force feedback. Med Image Anal

3(3):285–300. https:// doi. org/ 10. 1016/ s1361- 8415(99) 80025-5

12. Koizumi N, Warisawa S, Nagoshi M, Hashizume H, Mitsuishi M (2009) Construction methodology for a remote ultrasound diagnostic system.

IEEE Trans Robot 25(3):522–538. https:// doi. org/ 10. 1109/ TRO. 2009. 20197

85

13. Vilchis A, Masuda K, Troccaz J, Cinquin P (2003) Robot-based tele-echography: the TER system. Stud Health Technol Inform 95:212–217. https:// doi. org/ 10. 3233/ 978-1- 60750- 939-4- 212

14. Adams SJ, Burbridge BE, Badea A et al (2017) Initial experience using a telerobotic ultrasound system for adult abdominal sonography. Can Assoc Radiol J 68(3):308–314. https:// doi. org/ 10. 1016/j. carj. 2016. 08. 002

15. Adams SJ, Burbridge BE, Badea A et al (2018) A crossover comparison of standard and telerobotic approaches to prenatal sonography. J Ultrasound Med 37(11):2603–2612. https:// doi. org/ 10. 1002/ jum. 14619

16. Jiang Z, Salcudean SE, Navab N (2023) Robotic ultrasound imaging: stateof-the-art and future perspectives. Med Image Anal 89:102878. https:// doi. org/ 10. 1016/j. media. 2023. 102878

17. Arbeille P, Poisson G, Vieyres P, Ayoub J, Porcher M, Boulay JL (2003) Echographic examination in isolated sites controlled from an expert center using a 2-D echograph guided by a teleoperated robotic arm. Ultrasound Med Biol 29(7):993–1000. https:// doi. org/ 10. 1016/ s0301- 5629(03) 00063-2

18. Courreges F, Vieyres P, Istepanian RS, Arbeille P, Bru C (2005) Clinical trials and evaluation of a mobile, robotic tele-ultrasound system. J Telemed Telecare 11(Suppl 1):46–49. https:// doi. org/ 10. 1258/ 13576 33054 461552

19. Martinelli T, Bosson JL, Bressollette L et al (2007) Robot-based teleechography: clinical evaluation of the TER system in abdominal aortic exploration. J Ultrasound Med 26(11):1611–1616. https:// doi. org/ 10. 7863/ jum. 2007. 26. 11. 1611

20. Arbeille P, Capri A, Ayoub J, Kieffer V, Georgescu M, Poisson G (2007) Use of a robotic arm to perform remote abdominal telesonography. AJR Am J Roentgenol 188(4):W317–W322. https:// doi. org/ 10. 2214/ AJR. 05. 0469

21. Adams SJ, Burbridge B, Chatterson L, Babyn P, Mendez I (2022) A telerobotic ultrasound clinic model of ultrasound service delivery to improve access to imaging in rural and remote communities. J Am Coll Radiol

19(1):162–171. https:// doi. org/ 10. 1016/j. jacr. 2021. 07. 023

22. Zhang YQ, Sun LP, He T et al (2024) A 5G-based telerobotic ultrasound system provides qualified abdominal ultrasound services for patients on a rural island: a prospective and comparative study of 401 patients. Abdom Radiol 49(3):942–957. https:// doi. org/ 10. 1007/ s00261- 023- 04123-5

23. Jiang W, Zhao X, Gan T et al (2023) Application of a tele-ultrasound robot during COVID-19 pandemic: a feasibility study. J Ultrasound Med

42(3):595–601. https:// doi. org/ 10. 1002/ jum. 16041

24. Chai HH, Ye RZ, Xiong LF et al (2022) Successful use of a 5G-based robotassisted remote ultrasound system in a care center for disabled patients in rural China. Front Public Health 10:915071. https:// doi. org/ 10. 3389/ fpubh. 2022. 915071

25. Ren JY, Lei YM, Lei BS et al (2023) The feasibility and satisfaction study of

5G-based robotic teleultrasound diagnostic system in health check-ups.

Front Public Health 11:1149964. https:// doi. org/ 10. 3389/ fpubh. 2023.

11499 64

26. Löfgren C, Boman K, Olofsson M, Lindholm L (2009) Is cardiac consultation with remote-controlled real-time echocardiography a wise use of resources? Telemed J E Health 15(5):431–438. https:// doi. org/ 10. 1089/ tmj. 2008. 0148

27. Adams SJ, Penz E, Imeah B et al (2023) Economic evaluation of telerobotic ultrasound technology to remotely provide ultrasound services in rural and remote communities. J Ultrasound Med 42(1):109–123. https:// doi. org/ 10. 1002/ jum. 16070

28. Sekar P, Vilvanathan V (2007) Telecardiology: effective means of delivering cardiac care to rural children. Asian Cardiovasc Thorac Ann 15(4):320–323. https:// doi. org/ 10. 1177/ 021849 2307 01500 411

Downloads

Published

2025-01-13

How to Cite

1.
Antolin A, Roson N, Planes M, Castillo M, Alberti A, Escobar M. Validation of a tele-robotic ultrasound system for abdomen and thyroid gland explorations: a comparison with standard ultrasound. Ultrasound J. 2025;17(1):2. Accessed January 30, 2026. https://www.mattioli1885journals.com/index.php/theultrasoundjournal/article/view/18107