Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model

Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model

Authors

  • Eman Abdelrazik Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
  • Hend M. Hassan Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
  • Eman Hamza Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt/ Department of Biochemistry and Molecular Biology, Horus University, Damietta, Egypt.
  • Farah M. Ezz Elregal Medical Student, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
  • Marwa H. Elnagdy Department of Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
  • Eman A. Abdulhai Department of Pediatrics (pediatric neurology), Faculty of Medicine, Mansoura University, Mansoura, Egypt.

Keywords:

ADHD, Rotenone, Rosemary, Tyrosine Hydroxylase, Caspase-3

Abstract

Background and aim: Attention deficit hyperactivity disorder (ADHD) is heterogeneous neurobehavioral disorders that co-exist with cognitive and learning deficits affecting 3-7% of children. We study the role of rosemary in the protection of the prefrontal cortical neurons against rotenone-induced ADHD in juvenile rats. Methods: Twenty-four juvenile rats were divided into four groups (n=6): control group, received olive oil 0.5 ml/kg/day/ I.P. for 4 weeks, rosemary group received rosemary 75 mg/kg/day/ I.P. for 4 weeks, rotenone group received rotenone 1 mg/kg/day/ I.P. dissolved in olive oil for 4 days and combined group received rotenone 1 mg/kg/day/ I.P. for 4 days and rosemary 75 mg/kg/day/ I.P. for 4 weeks. Results: Rotenone group showed higher impulsivity with reduction in the recognition index and total locomotor activity. However, combined group showed significant improvement in the recognition index and the total locomotor activity. Neurochemical analysis disclosed that rotenone decreased levels of GSH and significantly increased lipid peroxidation and oxidative stress. The administration of rosemary amended these neurochemical changes. Rotenone caused a significant increase in serum amyloid protein A and C-reactive protein levels indicating a marked state of inflammation. Rosemary ameliorated these biochemical changes. The immunohistochemical expression of tyrosine hydroxylase was decreased in the rotenone group. On the other hand, caspase-3 was increased in the rotenone group. PCR confirmed immunohistochemical results for gene expression. Conclusions: The findings of the behavioral, neurochemical, biochemical, immunohistochemical and molecular outcomes suggested that rosemary could fight oxidative stress, inflammation and apoptosis in the prefrontal cortex of rotenone-induced ADHD in juvenile rats.

References

Rappley MD. Clinical practice. Attention deficit-hyperactivity disorder. N Engl J Med. 2005 Jan 13;352(2):165-173. doi: 10.1056/NEJMcp032387.

Pettersson R, Söderström S, Edlund-Söderström K, Nilsson KW. Internet-Based Cognitive Behavioral Therapy for Adults with ADHD in Outpatient Psychiatric Care. J Atten Disord. 2017 Apr;21(6):508-521. doi: 10.1177/1087054714539998.

Wolraich ML, Hagan JF Jr, Allan C, et al. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics. 2019 Oct; 144(4):e20192528. doi: 10.1542/peds.2019-2528.

Posner J, Polanczyk GV, Sonuga-Barke E. Attention-deficit hyperactivity disorder. Lancet. 2020 Feb 8;395(10222):450-462. doi: 10.1016/S0140-6736(19)33004-1.

Saez M, Barceló MA, Farrerons M, López-Casasnovas G. The association between exposure to environmental factors and the occurrence of attention-deficit/hyperactivity disorder (ADHD). A population-based retrospective cohort study. Environ Res. 2018 Oct; 166:205-214. doi: 10.1016/j.envres.2018.05.009.

Jadidian A, Hurley RA, Taber KH. Neurobiology of Adult ADHD: Emerging Evidence for Network Dysfunctions. J Neuropsychiatry Clin Neurosci. 2015 Summer;27(3):173-178. doi: 10.1176/appi.neuropsych.15060142.

Majdak P, Ossyra JR, Ossyra JM, et al. A new mouse model of ADHD for medication development. Sci Rep. 2016 Dec 20;6:39472. doi: 10.1038/srep39472.

Ishido M, Suzuki J, Masuo Y. Neonatal rotenone lesions cause onset of hyperactivity during juvenile and adulthood in the rat. Toxicol Lett. 2017 Jan 15; 266:42-48. doi: 10.1016/j.toxlet.2016.12.008.

Sherer TB, Richardson JR, Testa CM, et al. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. J Neurochem. 2007 Mar;100(6):1469-1479. doi: 10.1111/j.1471-4159.2006.04333.x.

Abdelrazik E, El-Bakary A, Shaaban S, et al. The role of autophagy in rotenone-induced neurotoxicity in mice. Mansoura J Forens Med Clin Toxicol. 2020 Jan 1; 28(1):15-23. doi:10.21608/mjfmct.2019.17909.1001

Pamies D, Block K, Lau P, et al. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol. 2018 Sep 1; 354:101-114. doi: 10.1016/j.taap.2018.02.003.

Tien LT, Kaizaki A, Pang Y, Cai Z, Bhatt AJ, Fan LW. Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life. Toxicology. 2013 Jun 7; 308:96-103. doi: 10.1016/j.tox.2013.03.014.

Gehricke JG, Kruggel F, Thampipop T, et al. The brain anatomy of attention-deficit/hyperactivity disorder in young adults - a magnetic resonance imaging study. PLoS One. 2017 Apr 13; 12(4):e0175433. doi: 10.1371/journal.pone.0175433.

Corona JC. Role of Oxidative Stress and Neuroinflammation in Attention-Deficit/Hyperactivity Disorder. Antioxidants (Basel). 2020 Oct 23; 9(11):1039. doi: 10.3390/antiox9111039.

Areti A, Komirishetty P, Kalvala AK, Nellaiappan K, Kumar A. Rosmarinic Acid Mitigates Mitochondrial Dysfunction and Spinal Glial Activation in Oxaliplatin-induced Peripheral Neuropathy. Mol Neurobiol. 2018 Sep; 55(9):7463-7475. doi: 10.1007/s12035-018-0920-4.

Bahri S, Ben Ali R, Gasmi K, et al. Prophylactic and curative effect of rosemary leaves extract in a bleomycin model of pulmonary fibrosis. Pharm Biol. 2017 Dec;55(1):462-471. doi: 10.1080/13880209.2016.1247881.

Zhang L, Spencer TJ, Biederman J, Bhide PG. Attention and working memory deficits in a perinatal nicotine exposure mouse model. PLoS One. 2018 May 24; 13(5):e0198064. doi:10.1371/journal.pone.0198064.

Yamashita M, Sakakibara Y, Hall FS, et al. Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology (Berl). 2013 Jun;227(4):741-749. doi: 10.1007/s00213-013-3009-9.

Shallie PD, Olayinka OO, Akpan HB, et al. Potential Neuro-therapeutic Effect of Flaxseed Oil on the Striatum of Rotenone Mice Model of Parkinson’Diseases. Br J Med Med Res. 2017; 22(1):1-9. doi:10.9734/BJMMR/ 2017/34207

Li C, Xia W, Wang L, et al. Effect of Renal Denervation on Cardiac Function and Inflammatory Factors in Heart Failure After Myocardial Infarction. J Cardiovasc Pharmacol. 2020 Nov;76(5):602-609. doi: 10.1097/FJC.0000000000000899.

Chang C, Pan Y, Du H, Wang X, Li X. Serum amyloid A1 can be a novel biomarker for evaluating the presence and severity of acute coronary syndrome. Clin Biochem. 2020 Nov; 85:27-32. doi: 10.1016/j.clinbiochem.2020.08.005.

Layton C, Bancroft JD. The hematoxylins and eosin. In: Suvarna KS, Layton C, Bancroft JD, editors. Bancroft's theory and practice of histological techniques E-Book. New York, USA: Elsevier health sciences; 2018. p. 126 – 138.

Mohamed EA, Kassem HH. Protective effect of nebivolol on doxorubicin-induced cardiotoxicity in rats. Arch Med Sci. 2018 Oct; 14(6):1450-1458. doi: 10.5114/aoms. 2018.79008.

Qian X, Zhang D, Cao Z, Ma H. Dopamine Pathway Mediated by DRD5 Facilitates Tumor Growth via Enhancing Warburg Effect in Esophageal Cancer. Front Oncol. 2021 Apr 8; 11:655861. doi: 10.3389/fonc.2021.655861.

Bianconi F, Kather JN, Reyes-Aldasoro CC. Experimental Assessment of Color Deconvolution and Color Normalization for Automated Classification of Histology Images Stained with Hematoxylin and Eosin. Cancers (Basel). 2020 Nov 11; 12(11):3337. doi: 10.3390/cancers12113337.

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods. 2001 Dec; 25(4):402-408. doi: 10.1006/meth.2001.1262.

Childress AC, Berry SA. Pharmacotherapy of attention-deficit hyperactivity disorder in adolescents. Drugs. 2012 Feb 12; 72(3):309-325. doi: 10.2165/11599580-000000000-00000.

Thomas R, Sanders S, Doust J, Beller E, Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics. 2015 Apr; 135(4):e994-1001. doi: 10.1542/peds.2014-3482.

Seyedemadi P, Rahnema M, Bigdeli MR, Oryan S, Rafati H. The Neuroprotective Effect of Rosemary (Rosmarinus officinalis L.) Hydro-alcoholic Extract on Cerebral Ischemic Tolerance in Experimental Stroke. Iran J Pharm Res. 2016 Fall; 15(4):875-883.

Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017 Mar 4; 18(3):551. doi: 10.3390/ijms18030551.

Nematolahi P, Mehrabani M, Karami-Mohajeri S, Dabaghzadeh F. Effects of Rosmarinus officinalis L. on memory performance, anxiety, depression, and sleep quality in university students: A randomized clinical trial. Complement Ther Clin Pract. 2018 Feb; 30:24-28. doi: 10.1016/j.ctcp.2017.11.004.

Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. Iran J Basic Med Sci. 2020 Sep;23(9):1100-1112. doi: 10.22038/ijbms.2020.45269.10541.

Chenni A, Yahia DA, Boukortt FO, Prost J, Lacaille-Dubois MA, Bouchenak M. Effect of aqueous extract of Ajuga iva supplementation on plasma lipid profile and tissue antioxidant status in rats fed a high-cholesterol diet. J Ethnopharmacol. 2007 Jan 19; 109(2):207-213. doi: 10.1016/j.jep.2006.05.036.

Pérez-Fons L, Garzón MT, Micol V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J Agric Food Chem. 2010 Jan 13; 58(1):161-171. doi: 10.1021/jf9026487.

Afonso MS, de O Silva AM, Carvalho EB, et al. Phenolic compounds from Rosemary (Rosmarinus officinalis L.) attenuate oxidative stress and reduce blood cholesterol concentrations in diet-induced hypercholesterolemic rats. Nutr Metab (Lond). 2013 Feb 2; 10(1):19. doi: 10.1186/1743-7075-10-19.

Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci. 2003 Jan; 113(1):15-38. doi: 10.1080/00207450390161903.

Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci. 2000 Dec; 3(12):1301-1306. doi: 10.1038/81834.

Ishido M, Shimaya E. Major histocompatibility complex expression in a rotenone model of Parkinson’s disease in rats. Fundam. Toxicol. Sci. 2016 Apr 20; 3(3):101-108. doi: 10.2131/fts.3.101

Liu Y, Guo Y, An S et al. Targeting caspase-3 as dual therapeutic benefits by RNAi facilitating brain-targeted nanoparticles in a rat model of Parkinson's disease. PLoS One. 2013 May 13; 8(5):e62905. doi: 10.1371/journal.pone.0062905.

Alabi AO, Ajayi AM, Ben-Azu B, Bakre AG, Umukoro S. Methyl jasmonate abrogates rotenone-induced parkinsonian-like symptoms through inhibition of oxidative stress, release of pro-inflammatory cytokines, and down-regulation of immnopositive cells of NF-κB and α-synuclein expressions in mice. Neurotoxicology. 2019 Sep; 74: 172-183. doi: 10.1016/j.neuro.2019.07.003.

Abdalla Arida D, Taha RI, Almasry SM, Saleh DM, Bondok AA. Structural Changes in the Prefrontal Cortex of the Albino Rat in Experimentally Induced Parkinson’s Disease. EJMCM, 2021; 7(11): 4904-4919.

Sherer TB, Betarbet R, Greenamyre JT. Environment, mitochondria, and Parkinson's disease. Neuroscientist. 2002 Jun; 8(3):192-197. doi: 10.1177/1073858402008003004.

Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol. 2003; 53 Suppl 3:S26-36; discussion S36-8. doi: 10.1002/ana.10483.

Moore DJ, West AB, Dawson VL, Dawson TM. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci. 2005; 28:57-87. doi: 10.1146/annurev. neuro.28.061604. 135718.

Subramaniam SR, Ellis EM. Neuroprotective effects of umbelliferone and esculetin in a mouse model of Parkinson's disease. J Neurosci Res. 2013 Mar; 91(3):453-461. doi: 10.1002/jnr.23164.

Abdel-Salam OM, Mohammed NA, Youness ER, Khadrawy YA, Omara EA, Sleem AA. Cerebrolysin protects against rotenone-induced oxidative stress and neurodegeneration. Journal of Neurorestoratology. 2014 Dec 1; 2(1):47-63. doi.org/10.2147/JN.S50114.

González-Burgos E, Fernandez-Moriano C, Gómez-Serranillos MP. Potential neuroprotective activity of Ginseng in Parkinson's disease: a review. J Neuroimmune Pharmacol. 2015 Mar;10(1):14-29. doi: 10.1007/s11481-014-9569-6.

Xiong ZK, Lang J, Xu G, et al. Excessive levels of nitric oxide in rat model of Parkinson's disease induced by rotenone. Exp Ther Med. 2015 Feb;9(2):553-558. doi: 10.3892/etm.2014.2099.

Ceylan M, Sener S, Bayraktar AC, Kavutcu M. Oxidative imbalance in child and adolescent patients with attention-deficit/hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2010 Dec 1;34(8):1491-1494. doi: 10.1016/j.pnpbp.2010.08.010.

Nasim S, Naeini AA, Najafi M, Ghazvini M, Hassanzadeh A. Relationship between Antioxidant Status and Attention Deficit Hyperactivity Disorder Among Children. Int J Prev Med. 2019 Apr 3; 10:41. doi: 10.4103/ijpvm.IJPVM_80_18.

Selek S, Savas HA, Gergerlioglu HS, Bulut M, Yilmaz HR. Oxidative imbalance in adult attention deficit/hyperactivity disorder. Biol Psychol. 2008 Oct;79(2):256-259. doi: 10.1016/j.biopsycho.2008.06.005.

Avcil S, Uysal P, Yenisey Ç, Abas BI. Elevated Melatonin Levels in Children With Attention Deficit Hyperactivity Disorder: Relationship to Oxidative and Nitrosative Stress. J Atten Disord. 2021 Mar;25(5):693-703. doi: 10.1177/1087054719829816.

Motaghinejad M, Motevalian M, Shabab B, Fatima S. Effects of acute doses of methylphenidate on inflammation and oxidative stress in isolated hippocampus and cerebral cortex of adult rats. J Neural Transm (Vienna). 2017 Jan;124(1):121-131. doi: 10.1007/s00702-016-1623-5.

Varol Tas F, Guvenir T, Tas G, Cakaloz B, Ormen M. Nitric oxide levels in disruptive behavioral disorder. Neuropsychobiology. 2006;53(4):176-180. doi: 10.1159/000093781.

Spahis S, Vanasse M, Bélanger SA, Ghadirian P, Grenier E, Levy E. Lipid profile, fatty acid composition and pro- and anti-oxidant status in pediatric patients with attention-deficit/hyperactivity disorder. Prostaglandins Leukot Essent Fatty Acids. 2008 Jul-Aug;79(1-2):47-53. doi: 10.1016/j.plefa.2008.07.005.

Oztop D, Altun H, Baskol G, Ozsoy S. Oxidative stress in children with attention deficit hyperactivity disorder. Clin Biochem. 2012 Jul; 45(10-11):745-748. doi: 10.1016/j. clinbiochem.2012.03.027.

Bashkatova V, Alam M, Vanin A, Schmidt WJ. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol. 2004 Apr;186(2):235-241. doi: 10.1016/j.expneurol.2003.12.005.

Schmidt WJ, Alam M. Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD). J Neural Transm Suppl. 2006;(70):273-276. PIMD:17017541.

Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J. 2012 Jan 15;441(2):523-540. doi: 10.1042/BJ20111451.

Sakr SA, Bayomy MF, El-Morsy AM. Rosemary extract ameliorates cadmium-induced histological changes and oxidative damage in the liver of albino rat. JOBAZ. 2015 Aug 1; 71:1-9. doi:10.1016/j.jobaz.2015.01.002

Nieto G, Ros G, Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines (Basel). 2018 Sep 4;5(3):98. doi: 10.3390/medicines5030098.

Wang H, Cheng J, Yang S, Cui SW, Wang M, Hao W. Rosemary extract reverses oxidative stress through activation of Nrf2 signaling pathway in hamsters fed on high fat diet and HepG2 cells.JFF. 2020 Nov 1;74:104136. doi: 10.1016/j. jff.2020.104136

Chang JP, Mondelli V, Satyanarayanan SK, et al. Cortisol, inflammatory biomarkers and neurotrophins in children and adolescents with attention deficit hyperactivity disorder (ADHD) in Taiwan. Brain Behav Immun. 2020 Aug;88:105-113. doi: 10.1016/j.bbi.2020.05.017.

Vogel SWN, Bijlenga D, Verduijn J, et al. Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology. 2017 May;79:31-39. doi: 10.1016/j.psyneuen.2017.02.009.

Chudal R, Brown AS, Gyllenberg D, et al. Maternal serum C-reactive protein (CRP) and offspring attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 2020 Feb;29(2):239-247. doi: 10.1007/s00787-019-01372-y.

Rubia K, Overmeyer S, Taylor E, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry. 1999 Jun;156(6):891-896. doi: 10.1176/ajp.156.6.891.

Arnsten AF. Toward a new understanding of attention-deficit hyperactivity disorder pathophysiology: an important role for prefrontal cortex dysfunction. CNS Drugs. 2009;23 Suppl 1:33-41. doi: 10.2165/00023210-200923000-00005.

Alam M, Schmidt WJ. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats. Behav Brain Res. 2002 Oct 17;136(1):317-324. doi: 10.1016/s0166-4328(02)00180-8.

Abdel-Salam OM, Sleem AA, Youness ER, Yassen NN, Shaffie N, El-Toumy SA. Capsicum protects against rotenone-induced toxicity in mice brain via reduced oxidative stress and 5-lipoxygenase activation. J. Pharm. Pharmacol. 2018;2(3):60-77. doi:10.26502/jppr.0011

Lee HJ, Cho HS, Park E, et al. Rosmarinic acid protects human dopaminergic neuronal cells against hydrogen peroxide-induced apoptosis. Toxicology. 2008 Sep 4;250(2-3):109-115. doi: 10.1016/j.tox.2008.06.010.

Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson's disease. Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2875-2880. doi: 10.1073/pnas.040556597.

Yuan J, Yankner BA. Apoptosis in the nervous system. Nature. 2000 Oct 12;407(6805):802-809. doi: 10.1038/35037739.

Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000 Nov;1(2):120-129. doi: 10.1038/35040009.

Mogi M, Togari A, Kondo T, et al. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm (Vienna). 2000;107(3):335-341. doi: 10.1007/s007020050028.

Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol. 2000 Nov;166(1):29-43. doi: 10.1006/exnr.2000.7489.

Sonia Angeline M, Chaterjee P, Anand K, Ambasta RK, Kumar P. Rotenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat. Neuroscience. 2012 Sep 18; 220:291-301. doi: 10.1016/j.neuroscience.2012.06.021.

Wang X, Qin ZH, Leng Y, et al. Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem. 2002 Dec;83(5):1094-1102. doi: 10.1046/j.1471-4159.2002.01224.x.

Ahmadi FA, Linseman DA, Grammatopoulos TN, et al. The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem. 2003 Nov; 87(4):914-921. doi: 10.1046/j.1471-4159.2003.02068.x.

Lin TK, Cheng CH, Chen SD, Liou CW, Huang CR, Chuang YC. Mitochondrial dysfunction and oxidative stress promote apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade following chronic rotenone intoxication in rats. Int J Mol Sci. 2012; 13(7):8722-8739. doi: 10.3390/ijms13078722.

Johnson J Jr, Pajarillo E, Karki P, et al. Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity. Neurotoxicology. 2018 Jul; 67:112-120. doi: 10.1016/j. neuro.2018.05.001.

Genro JP, Kieling C, Rohde LA, Hutz MH. Attention-deficit/hyperactivity disorder and the dopaminergic hypotheses. Expert Rev Neurother. 2010 Apr; 10(4):587-601. doi: 10.1586/ ern.10.17.

Mehta TR, Monegro A, Nene Y, Fayyaz M, Bollu PC. Neurobiology of ADHD: a review. Curr. Dev. Disord. Rep. 2019 Dec;6: 235-240. doi: 10.1007/s40474-019-00182-w

Baek DJ, Lee CB, Baek SS. Effect of treadmill exercise on social interaction and tyrosine hydroxylase expression in the attention-deficit/ hyperactivity disorder rats. J Exerc Rehabil. 2014 Oct 31; 10(5):252-257. doi: 10.12965/jer.140162.

Liu Y, Sun JD, Song LK, et al. Environment-contact administration of rotenone: A new rodent model of Parkinson's disease. Behav Brain Res. 2015 Nov 1; 294:149-161. doi: 10.1016/j.bbr.2015.07.058.

Mahmod MA, Galhom R, Nasr El-Din W, Ali MHM, Abdel-Hamid SA. The effect of rotenone on the dopaminergic cells of the substantia nigra of the midbrain in the adult male albino rats. Sohag Medical Journal. 2017 Jan 1;21(1):247-257. doi:10.21608/smj. 2017.40762

Milusheva E, Baranyi M, Kittel A, Sperlágh B, Vizi ES. Increased sensitivity of striatal dopamine release to H2O2 upon chronic rotenone treatment. Free Radic Biol Med. 2005 Jul 1; 39(1):133-142. doi: 10.1016/j.freeradbiomed.2005.02.034.

Kim SJ, Kim JS, Cho HS, et al. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport. 2006 Nov 6;17(16):1729-1733. doi: 10.1097/01.wnr.0000239951.14954.10.

Loussouarn M, Krieger-Liszkay A, Svilar L, Bily A, Birtić S, Havaux M. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol. 2017 Nov;175(3):1381-1394. doi: 10.1104/pp.17.01183.

Dhanalakshmi C, Janakiraman U, Manivasagam T, et al. Vanillin Attenuated Behavioural Impairments, Neurochemical Deficts, Oxidative Stress and Apoptosis Against Rotenone Induced Rat Model of Parkinson's Disease. Neurochem Res. 2016 Aug; 41(8):1899-1910. doi: 10.1007/s11064-016-1901-5.

Ramkumar M, Rajasankar S, Gobi VV, et al. Neuroprotective effect of Demethoxycurcumin, a natural derivative of Curcumin on rotenone induced neurotoxicity in SH-SY 5Y Neuroblastoma cells. BMC Complement Altern Med. 2017 Apr 18;17(1):217. doi: 10.1186/s12906-017-1720-5.

Azmy MS, Menze ET, El-Naga RN, Tadros MG. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson's Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol Neurobiol. 2018 Aug;55(8):6572-6588. doi: 10.1007/s12035-017-0855-1.

Sengupta P. The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med. 2013 Jun;4(6):624-630.

Lo SC, Wang Y, Weber M, Larson JL, Scearce-Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci. 2015 Feb 4;35(5):2118-2132. doi: 10.1523/JNEUROSCI.3280-14.2015.

Ishido M. The temporal turning window for rat behavioral phenotypes by rotenone. Fundamental Toxicological Sciences. 2018 Dec 28;5(6):195-202. doi:10.2131/fts.5.195

Lo SC, Scearce-Levie K, Sheng M. Characterization of social behaviors in caspase-3 deficient mice. Sci Rep. 2016 Jan 19; 6:18335. doi: 10.1038/srep18335.

Downloads

Published

14-06-2023

Issue

Section

ORIGINAL CLINICAL RESEARCH

How to Cite

1.
Abdelrazik E, Hassan HM, Hamza E, Ezz Elregal FM, Elnagdy MH, Abdulhai EA. Beneficial role of rosemary extract on oxidative stress-mediated neuronal apoptosis in rotenone-induced attention deficit hyperactivity disease in juvenile rat model. Acta Biomed [Internet]. 2023 Jun. 14 [cited 2024 Jul. 21];94(3):e2023104. Available from: https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/14260