Nutritional studies in patients with β-thalassemia major: A short review: Nutrition Studies in Beta Thalassemia Major

Nutritional studies in patients with β-thalassemia major: A short review

Nutrition Studies in Beta Thalassemia Major

Authors

  • Ashraf T Soliman Department of Pediatrics, Hamad General Hospital, Doha, Qatar
  • Mohamed Yassin
  • Fawzia Alyafei
  • Nada Alaaraj
  • Noor Hamed
  • Shayma Osman
  • Nada Soliman

Keywords:

β-thalassemia, undernutrition, underweight, body composition, prevalence, macronutrients, macronutrients.

Abstract

Background: Patients with β-thalassemia major (BTM) had variable prevalence of undernutrition and abnormal body composition.  Methods: We performed an electronic search in PubMed, Scopus, Research gate, and Web of Sciences to evaluate the prevalence of nutritional disorders in patients with BTM worldwide in relation to their body composition and possible etiological factors. In addition, we reviewed the published nutritional intervention studies.  Results: 22 studies on the prevalence of undernutrition (12 countries) and 23 nutritional intervention studies were analyzed.  Undernutrition occurred in a considerable number of patients but varied greatly among different countries (from 5.2% to 70%). The lower middle income (LMI) countries (India, Pakistan, Iran, Egypt) had higher prevalence, while (high -middle and high income (Turkey, Greece, North America, USA, Canada) had lower prevalence.  Even in patients with normal BMI, abnormalities of body composition are common with decreased muscle mass, lean-body mass, and bone mineral density. 65% to 75% of them had lower energy intake with low levels of circulating nutrients, minerals (zinc, selenium, and copper), and vitamins (D, E) versus controls. Increased macro and micronutrient requirements decreased absorption and /or increased loss or excretion are etiologic factors. Undernutrition was associated with short stature and lower quality of life (QOL). High prevalence of endocrinopathies, poor transfusion regimen (tissue hypoxia), improper chelation, and lack of maternal education, represented important risk factors in the production of poor growth in weight and stature. Conclusions: Timely detection of undernutrition in patients with BTM and proper nutritional intervention could prevent growth delay and comorbidities.

References

Fung EB. Nutritional deficiencies in patients with thalassemia. Ann N Y Acad Sci. 2010; 1202:188-96. doi: 10.1111/j.1749-6632.2010.05578. x.

Fucharoen S, Ketvichit P, Pootrakul P, et al, Clinical manifestation of beta-thalassemia/hemoglobin E disease. J Pediatr Hematol Oncol. 2000 ;22(6):552-7. doi: 10.1097/00043426-200011000-00022.

Soliman AT, De Sanctis V, Elalaily R, Yassin M. Insulin-like growth factor- I and factors affecting it in thalassemia major. Indian J Endocrinol Metab. 2015;19(2):245-51. doi: 10.4103/2230-8210.131750.

Fung EB, Xu Y, Trachtenberg F, et al; Thalassemia Clinical Research Network. Inadequate dietary intake in patients with thalassemia. J Acad Nutr Diet. 2012;112(7):980-90. doi: 10.1016/j.jand.2012.01.017.

Schnedl WJ, Schenk M, Lackner S, et al, β-thalassemia minor, carbohydrate malabsorption and histamine intolerance. J Community Hosp Intern Med Perspect. 2017;7(4):227-9. doi: 10.1080/ 20009666. 2017. 1369378.

Musallam KM, Taher AT, Cappellini MD, Sankaran VG. Clinical experience with fetal hemoglobin induction therapy in patients with β-thalassemia. Blood. 2013;121(12):2199-212. doi: 10.1182/blood-2012-10-408021.

Vlachos P, Liakakos D. Malabsorption of vitamin B12 in homozygous beta-thalassemia. Nuklearmedizin. 1976;15(4):195-6. PMID: 980798.

Goldberg EK, Neogi S, Lal A, Higa A, Fung E. Nutritional Deficiencies Are Common in Patients with Transfusion-Dependent Thalassemia and Associated with Iron Overload. J Food Nutr Res (Newark). 2018;6(10):674-681. doi: 10.12691/jfnr-6-10-9.

Fung EB. The importance of nutrition for health in patients with transfusion-dependent thalassemia. Ann N Y Acad Sci. 2016;1368(1):40-8. doi: 10.1111/nyas.13003.

Rosen C J, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009;122(5):409–14. doi: 10.1016/j.amjmed.2008.11.027.

Casale M, Citarella S, Filosa A, et al. Endocrine function and bone disease during long-term chelation therapy with deferasirox in patients with β-thalassemia major. Am J Hematol. 2014;89(12):1102–6. doi: 10.1002/ajh.23844.

Lidoriki I, Stavrou G, Schizas D, Frountzas M, et al . Nutritional Status in a Sample of Patients With β-Thalassemia Major. Cureus. 2022 , 14;14(8):e27985. doi: 10.7759/cureus.27985

Fung EB, Xu Y, Trachtenberg F, et al. Thalassemia Clinical Research Network. Inadequate dietary intake in patients with thalassemia. J Acad Nutr Diet. 2012,112(7):980-90. doi: 10.1016/j.jand.2012.01.017.

Claster S, Wood JC, Noetzli L, Carson SM, et al. Nutritional deficiencies in iron overloaded patients with hemoglobinopathies. Am J Hematol. 2009 ;84(6):344-8. doi: 10.1002/ajh.21416.

Fung EB, Xu Y, Kwiatkowski JL, Vogiatzi MG, et al; Thalassemia Clinical Research Network. Relationship between chronic transfusion therapy and body composition in subjects with thalassemia. J Pediatr. 2010;157(4):641-7, 647. doi: 10.1016/j.jpeds.2010.04.064.

Vogiatzi MG, Macklin EA, Trachtenberg FL, et al,. Thalassemia Clinical Research Network. Differences in the prevalence of growth, endocrine and vitamin D abnormalities among the various thalassaemia syndromes in North America. Br J Haematol. 2009;146(5):546-56. doi: 10.1111/j.1365-2141. 2009. 07793.x.

Bulgurcu SC, Canbolat Ayhan A, Emeksiz HC, et al. Assessment of the Nutritional Status, Bone Mineralization, and Anthropometrics of Children with Thalassemia Major. Medeni Med J. 2021 19;36(4):325-332. doi: 10.4274/MMJ.galenos.2021.66915.

Moiz B, Habib A, Sawani S, et al. Anthropometric measurements in children having transfusion-dependent beta thalassemia. Hematology. 2018;23(4):248-252. doi: 10.1080/10245332.2017.1396044.

Biswas B, Naskar NN, Basu K, et al. Malnutrition, Its Attributes, and Impact on Quality of Life: An Epidemiological Study among β-Thalassemia Major Children. Korean J Fam Med. 2021;42(1):66-72. doi: 10.4082/kjfm.19.0066.

Tienboon P, Sanguansermsri T, Fuchs GJ. Malnutrition and growth abnormalities in children with beta thalassemia major. Southeast Asian J Trop Med Public Health. 1996 ;27(2):356-61. PMID: 9280002.

Shaidaton Nisha, Syeda Saima Alam, Md. Nahian Rahman and Khaleda Islam. Nutritional Status and Dietary Patterns of Thalassemia Patients at Selected Hospitals in Dhaka City, Bangladesh. Nov Tech Nutri Food Sci. 2020;5(2). NTNF. 000607. DOI: 10.31031/NTNF.2020.05.000607.

Vlychou M, Alexiou E, Thriskos P, et al. Body Composition in Adult Patients with Thalassemia Major. Int J Endocrinol. 2016; 2016:6218437. doi: 10.1155/2016/6218437.

Asadi-Pooya AA, Karamifar H. Body mass index in children with beta-thalassemia major. Turk J Haematol. 2004;5;21(4):177-80. PMID: 27264281.

Prakash A, Aggarwal R. Thalassemia major in adults: short stature, hyperpigmentation, inadequate chelation, and transfusion-transmitted infections are key features. North Am J Med Sci 2012; 4:141-4. doi: 10.4103/1947-2714.93886.

Sheikh MA, Shakir MU, Shah M. The Assessment of Nutritional Status of Children with Beta Thalassemia Major with Body Mass Index. PJMHS. 2017:11 (1) 262-5. https://www.pjmhsonline.com/2017/jan_march/pdf/262.pdf

Mahmoud RA, Khodeary A, Farhan MS. Detection of endocrine disorders in young children with multi-transfused thalassemia major. Ital J Pediatr. 2021:31;47(1):165. https://doi.org/10.1186/s13052-021-01116-2

Farmaki K, Tzoumari I, Pappa C, et al. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-75. doi:10.1111/j.1365-2141.2009.07970.x

Gholamreza B, Nasirkandy P, Masoumeh S et al. Prevalence of Short Stature, Underweight and Delayed Puberty in Iranian Patients with Thalassemia Major: A Systematic Review and Meta-Analysis. Iran J Ped Hematol Oncol. 2017:7(4): 245-259. doi:ijpho.ssu.ac.ir/article-1-338-en.html.

Shahar S , Ghayour-Mobarhan M , Mirhosseini NZ et al. Factors affecting nutritional status among pediatric patients with transfusion-dependent beta thalassemia. Mediterr J Nutr Metab. 2013; 6:45–51 doi: 10.1007/s12349-012-0112-0.

Pemde H, Jagdish Chandra J, Gupta D, Singh V, et al. Physical growth in children with transfusion-dependent thalassemia. Pediatric Health Med Ther. 2011; 2:13-19. doi.org/10.2147/PHMT.S15305.

Nasr MR, Ali S, El Gabry E. Malnutrition, and growth abnormalities among Egyptian children with beta-thalassemia major. Egyptian Journal of Food Science. 2003; 31 (1-2): 227-236. https://pubmed.ncbi.nlm.nih.gov/9280002/

Voravarn S, Tanphaichitr MS, Visuthi B, Tanphaichitr V . Causes of inadequate protein-energy status in thalassemic children. Asia Pacific J Clin Nutr 1995; 4:133–135. https://pubmed.ncbi.nlm.nih.gov/24394268/

Yousefian S, Aliabad GM, Saleh R, Khedmati M. Association of Body mass index and serum ferritin level in pediatrics with Beta -thalassemia major disease. Iran J Ped Hematol Oncol. 2022;12 (1) 34-40. doi: ijpho.ssu.ac.ir/article-1-611-en.html.

Bash HS, Al-Hindy A,Al-Mamory BH, et al.. The study of serum ferritin level as a predictor of growth retardation in Thalassemia-major. DOI: https://doi.org/10.5281/zenodo.5449803.

Filosa A, Di Maio S, Esposito G, et al. Persistence of delayed adrenarche in boys with thalassemia. J Pediatr Endocrinol. 2001; 14:407–14. doi.org/10.1515/JPEM.2001.14.4.407.

Tienboon P. Effect of nutrition support on immunity in paediatric patients with beta-thalassaemia major. Asia Pacific J Clin Nutr. 2003; 12:61–5. PMID: 12737012.

Fuchs GJ, Tienboon P, Linpisarn S, et al. Nutritional factors and thalassaemia major. Arch Dis Child. 1996;74(3):224-7. doi: 10.1136/adc.74.3.224.

Soliman AT, El-Matary W, Fattah MM, et al. The effect of high-calorie diet on nutritional parameters of children with beta-thalassaemia major. Clin Nutr. 2004; 23:1153–8. doi: 10.1016/j.clnu.2004.03.001.

Kalef-Ezra J, Zibis A, Chaliassos N, et al. Body composition in homozygous B-Thalassemia. Ann NY Acad Sci. 2000; 904:621–4. doi: 10.1111/j.1749-6632.2000.tb06527.x.

Mirhosseini, N. Z., Shahar, S, Ghayour-Mobarhan, M, et al. Factors affecting nutritional status among pediatric patients with transfusion-dependent beta thalassemia. Mediterr J Nutr Metab. 2013; 6:45–51 doi:10.1007/s12349-012-0112-0

Kassab-Chekir A, Laradi S, Ferchichi S, et al. Oxidant, antioxidant status and metabolic data in patients with beta thalassemia. Clin Chim Acta. 2003: 338:79–86. doi: 10.1016/j.cccn.2003.07.010.

Soliman AT, De Sanctis V, Elalaily R, et al. Vitamin D deficiency in adolescents. Indian J Endocrinol Metab. 2014;18 (Suppl 1):S9-S16. doi: 10.4103/2230-8210.145043.

Eshghi P, Alavi S, Ghavami S, Rashidi A. Growth impairment in β-thalassemia major: the role of trace element deficiency and other potential factors. J Pediatr Hematol Oncol.2007: 29:5–8. doi: 10.1097/ MPH. 0b013e31802d74f3.

Fung EB, Xu Y, Trachtenberg F, et al; Thalassemia Clinical Research Network. Inadequate dietary intake in patients with thalassemia. J Acad Nutr Diet. 2012;112(7):980-90. doi: 10.1016/j.jand.2012.01.017.

Goldberg EK, Lal A, Fung EB. Nutrition in Thalassemia: A Systematic Review of Deficiency, Relations to Morbidity, and Supplementation Recommendations. J Pediatr Hematol Oncol. 2022 ;44(1):1-11. doi: 10.1097/MPH.0000000000002291.

Fung EB, Kwiatkowski JL, Huang JN, Gildengorin G, King JC, Vichinsky EP. Zinc supplementation improves bone density in patients with thalassemia: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2013;98(4):960-71. doi: 10.3945/ajcn.112.049221.

Liakakos D, Vlachos P, Anoussakis C, et al. Calcium metabolism in children suffering from homozygous β-thalassaemia after oral administration of 47Ca. Nuklearmedizin. 1976 15:77–9. https://pubmed.ncbi.nlm.nih.gov/1272816/

Kraidith K, Svasti S, Teerapornpuntakit J, et al. 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am J Physiol Endocrinol Metab.2016; 311:E214–E23. doi: 10.1152/ajpendo.00067.2016.

Mariani R, Trombini P, Pozzi M, Piperno A. Iron metabolism in thalassemia and sickle cell disease. Mediterr J Hematol Infect Dis. 2009;1(1). doi: 10.4084/MJHID.2009.006.

Visitchanakun P, Saisorn W, Wongphoom J, et al. Gut leakage enhances sepsis susceptibility in iron-overloaded β-thalassemia mice through macrophage hyperinflammatory responses. Am J Physiol Gastrointest Liver Physiol. 2020;318(5):G966-G9. doi: 10.1152/ajpgi.00337.2019.

Botta A, Barra NG, Lam NH, et al. Iron Reshapes the Gut Microbiome and Host Metabolism. J Lipid Atheroscler. 2021;10(2):160-83. doi: 10.12997/jla.2021.10.2.160.

Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577-89. doi: 10.1038/nrgastro.2012.156.

Abdulrazzaq YM, Ibrahim A, Al-Khayatb Al, et al. Beta-thalassemia major and its effect on amino acid metabolism and growth in patients in the United Arab Emirates. Clin Chim Acta. 2005; 352:183–90. doi: 10.1016/j.cccn.2004.09.017.

Vaisman N, Akivis A, Sthoeger D, Barak Y, Matitau A, Wolach B. Resting energy expenditure in patients with thalassemia major. Am J Clin Nutr. 1995;61(3):582-4. doi: 10.1093/ajcn/61.3.582.

Fibach E, Dana M. Oxidative Stress in β-Thalassemia. Mol Diagn Ther. 2019;23(2):245-61. doi: 10.1007/s40291-018-0373-5.

Walter PB, Fung EB, Killilea DW, et al. Oxidative stress and inflammation in iron-overloaded patients with beta-thalassaemia or sickle cell disease. Br J Haematol. 2006;135(2):254-63. doi: 10.1111/j.1365-2141.2006.06277.x.

Akohoue S, Shankar S, Milne G, et al. Energy Expenditure, Inflammation, and Oxidative Stress in Steady-State Adolescents With Sickle Cell Anemia. Pediatr Res.2007; 61;233–8. doi: 10.1203/ pdr. 0b013e31802d7754.

Yousefian S, Aliabad GM, Saleh R, Khedmati M. Association of Body mass index and serum ferritin level in pediatrics with Beta -thalassemia major disease. Iran J Ped Hematol Oncol. 2022;12 (1): 34-40. doi: ijpho.ssu.ac.ir/article-1-611-en.

De Sanctis V, Soliman AT, Elsedfy H, et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J Endocrinol Metab. 2013;17(1):8-18. doi: 10.4103/2230-8210.107808.

Casale M, Citarella S, Filosa A, et al. Endocrine function and bone disease during long-term chelation therapy with deferasirox in patients with β-thalassemia major. Am J Hematol. 2014;89(12):1102-6. doi: 10.1002/ajh.23844.

Farmaki K, Tzoumari I, Pappa C, et al. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-75. doi:10.1111/j.1365-2141.2009.07970.x.

Shalitin S, Carmi D, Weintrob N, et al . Serum ferritin level as a predictor of impaired growth and puberty in thalassemia major patients. Eur J Haematol. 2005;74(2):93-100. doi:10.1111/j.1600-0609.2004.00371.x

Lal A, Wong T, Keel S, et al. The transfusion management of beta thalassemia in the United States. Transfusion. 2021;61(10):3027-39. doi: 10.1111/trf.16640.

Ghrayeb H, Elias M, Nashashibi J, et al. Appetite and ghrelin levels in iron deficiency anemia and the effect of parenteral iron therapy: A longitudinal study. PLoS One. 2020;15(6):e0234209. doi: 10.1371/ journal.pone.0234209.

Mahachoklertwattana P, Yimsumruay T, Poomthavorn P, et al. Acute effects of blood transfusion on growth hormone and insulin-like growth factor-1 levels in children with thalassemia. Horm Res Paediatr. 2011;75(4):240-5. doi: 10.1159/000321189.

Soliman AT, Abushahin A, Abohezeima K, et al. Age related IGF-I changes and IGF-I generation in thalassemia major. Pediatr Endocrinol Rev. 2011;8 (Suppl 2):278-83. PMID: 21705978.

Soliman A, Yasin M, El-Awwa A, et al. Acute effects of blood transfusion on pituitary gonadal axis and sperm parameters in adolescents and young men with thalassemia major: a pilot study. Fertil Steril. 2012;98(3):638-43. doi: 10.1016/j.fertnstert.2012.05.047.

Veldhuis JD, Roemmich JN, Richmond EJ, et al. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev. 2005;26(1):114-46. doi: 10.1210/er.2003-0038

Riza M, Mulatsih S, Triasih R. Factors associated with insulin-like growth factor-1 in children with thalassemia major. 11Apr.2019 [cited 13Dec.2022];59(2):72-. Available from: https://paediatricaindonesiana.org/index.php/paediatrica-indonesiana/article/view/2074

Soliman AT, Khalafallah H, Ashour R. Growth and factors affecting it in thalassemia major. Hemoglobin. 2009;33 (Suppl 1):S116-26. doi: 10.3109/03630260903347781.

Kulik-Rechberger B, Janiszewska O. Insulin-like growth factor 1, its binding protein 3, and sex hormones in girls during puberty. Ann Univ Mariae Curie Sklodowska Med. 2004;59(2):75-9. PMID: 16146053.

Beckett PR, Wong WW, Copeland KC. Developmental changes in the relationship between IGF-I and body composition during puberty. Growth Horm IGF Res. 1998;8(4):283-8. doi: 10.1016/s1096-6374(98)80123-8.

Ekbote VH, Khadilkar VV, Khadilkar AV, et al. Relationship of insulin-like growth factor 1 and bone parameters in 7-15 years old apparently, healthy Indian children. Indian J Endocrinol Metab. 2015;19(6): 770-4. doi: 10.4103/2230-8210.167549.

Kanbur NO, Derman O, Kinik E. The relationships between pubertal development, IGF-1 axis, and bone formation in healthy adolescents. J Bone Miner Metab. 2005;23(1):76-83. doi: 10.1007/s00774-004-0544-9.

Cole TJ, Ahmed ML, Preece MA, Hindmarsh P, Dunger DB. The relationship between Insulin-like Growth Factor 1, sex steroids and timing of the pubertal growth spurt. Clin Endocrinol (Oxf). 2015 ; 82(6):862-9. doi: 10.1111/cen.12682.

Ong KK, Emmett P, Northstone K, et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. J Clin Endocrinol Metab. 2009;94(5):1527-32. doi: 10.1007/s10995-012-1139-z.

Schiaffino S, Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle.2011;1:4. doi.org/10.1186/2044-5040-1-4.

Kim YJ, Tamadon A, Park HT, et al. The role of sex steroid hormones in the pathophysiology and treatment of sarcopenia. Osteoporos Sarcopenia. 2016;2(3):140-55. doi: 10.1016/j.afos.2016.06.002.

Gagliardi I, Mungari R, Gamberini MR. et al. GH/IGF-1 axis in a large cohort of ß-thalassemia major adult patients: a cross-sectional study. J Endocrinol Invest.2022; 45:1439–45. doi: 10.1007/s40618-022-01780-z.

Christoforidis A, Maniadaki I, Stanhope R. Growth hormone / insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev. 2005;3(1):5-10. PMID: 16369208.

Shahramian I, Noori NM, Teimouri A, Akhlaghi E, Sharafi E. The Correlation between Serum Level of Leptin and Troponin in Children with Major Beta-Thalassemia. Iran J Ped Hematol Oncol. 2015;5(1):11-7. PMID: 25914798; PMCID: PMC4402152.:

Al-Naama LM, Hassan MK, Abdul Karim MM. Evaluation of Serum Leptin Levels and Growth in Patients with β-Thalassaemia Major. Anemia. 2016; 2016:8454286. doi: 10.1155/2016/8454286.

Perrone L, Perrotta S, Raimondo P, et al. Inappropriate leptin secretion in thalassemia: a potential cofactor of pubertal timing derangement. J Pediatr Endocrinol Metabo. 2003;16(6):877–81. doi: 10.1515/jpem.2003.

Shahramian I, Akhlaghi E, Ramezani A, et al. A study of leptin serum concentrations in patients with major Beta-thalassemia. Iran J Ped Hematol Oncol. 2013;3(2):59-63. PMID: 24575271.

Biswas B, Naskar NN, Basu K, et al. Malnutrition, Its Attributes, and Impact on Quality of Life: An Epidemiological Study among β-Thalassemia Major Children. Korean J Fam Med. 2021;42(1):66-72. doi: 10.4082/kjfm.19.0066.

Elalfy MS, Farid MN, Labib JH, RezkAllah HK. Quality of life of Egyptian b-thalassemia major children and adolescents. Egypt J Haematol 2014; 39:222-6. DOI: 10.4103/1110-1067.153963

Hakeem GLA, Mousa SO, Moustafa AN, et al. Health-related quality of life in pediatric and adolescent patients with transfusion-dependent ß-thalassemia in upper Egypt (single center study). Health Qual Life Outcomes. 2018 ;10;16(1):59. doi: 10.1186/s12955-018-0893-z.

Fung EB, Kwiatkowski JL, Huang JN, et al. Zinc supplementation improves bone density in patients with thalassemia: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2013;98 (4):960–71.doi.org/10.3945/ajcn.112.049221

Arcasoy A, Cavdar A, Cin S,. Effects of zinc supplementation on linear growth in beta-thalassemia (a new approach). Am J Hematol. 1987;24(2):127-36. doi: 10.1002/ajh.2830240203.

Ghahramanlu E, Banihashem A, Mirhossini NZ, et al. Effect of zinc supplementation on serum antibody titers to heat shock protein 27 in patients with thalassemia major. Hematology. 2014;19(2):113-9. doi: 10.1179/1607845413Y.0000000099.

Rashidi M, Aboomardani M, Rafraf M, et al. Effects of Vitamin E and Zinc Supplementation on Antioxidants in Beta thalassemia major Patients. Iran J Pediatr. 2011;21 (1) :8-14. PMID: 23056757.

d'Arqom A, G Putri M, Savitri Y, et al. Vitamin and mineral supplementation for β-thalassemia during COVID-19 pandemic. Future Sci OA. 2020 ;18;6(9): FSO628. doi: 10.2144/fsoa-2020-0110.

Tesoriere L, D'arpa D, Butera D, et al. Oral supplements of vitamin E improve measures of oxidative stress in plasma and reduce oxidative damage to LDL and erythrocytes in beta-thalassemia intermedia patients. Free Radic. Res. 2001; 34 (5):529–40. doi: 10.1080/10715760100300461.

Sutipornpalangkul W, Morales NP, Unchern S, et al. Vitamin E supplement improves erythrocyte membrane fluidity of thalassemia: an ESR spin labeling study. J Med Assoc Thai. 2012;95(1):29–36. PMID: 22379738.

Elalfy MS, Saber MM, Adly AM, et al. Role of vitamin C as an adjuvant therapy to different iron chelators in young β-thalassemia major patients: efficacy and safety in relation to tissue iron overload. Eur J Haematol. 2016; 96(3):318–26. doi: 10.1111/ejh.12594.

Fung EB, Aguilar C, Micaily I, et al. Treatment of vitamin D deficiency in transfusion-dependent thalassemia. Am. J. Hematol.2011; 86(10):871–3. doi: 10.1002/ajh.22117.

Soliman A, Adel A, Wagdy M, et al. Calcium homeostasis in 40 adolescents with beta-thalassemia major: a case-control study of the effects of intramuscular injection of a megadose of cholecalciferol. Pediatr Endocrinol Rev. 2008;6 (Suppl 1):149-54. PMID: 19337170.

Soliman A, De Sanctis V, Yassin M. Vitamin D status in thalassemia major: an update. Mediterr. J Hematol Infect Dis.2013; 5(1), e2013057–e2013057. doi: 10.4084/MJHID.2013.057.

Thiagarajan NR, Kumar CGD, Sahoo J, et al. Effect of Vitamin D and Calcium Supplementation on Bone Mineral Content in Children with Thalassemia. Indian Pediatr. 2019;56(4):307-10. PMID: 31064900.

Toptas B, Baykal A, Yesilipek A, et al. L-carnitine deficiency and red blood cell mechanical impairment in beta-thalassemia major. Clin Hemorheol Microcirc. 2006;35(3):349-57. PMID: 16899956.

El-Beshlawy A, Youssry I, El-Saidi S, et al. Pulmonary hypertension in beta-thalassemia major and the role of L-carnitine therapy. Pediatr Hematol Oncol. 2008;25(8):734-43. doi: 10.1080/ 08880 010802244035.

Karimi M, Mohammadi F, Behmanesh F, et al. Effect of combination therapy of hydroxyurea with l-carnitine and magnesium chloride on hematologic parameters and cardiac function of patients with beta-thalassemia intermedia. Eur J Haematol. 2010;84(1):52-8. doi: 10.1111/j.1600-0609.2009.01356. x.

Shahidi M, Hashemi SR, Fattahi N, et al. The Effects of L-Carnitine on Echocardiographic Changes in Patients With β-Thalassemia Major and Intermedia. J Pediatr Hematol Oncol. 2020;42(6):386-90. doi: 10.1097/MPH.0000000000001850.

Egitto, Elizabeth A, Scott MAJ. Does folic acid supplementation have a role in the treatment of anemia associated with beta thalassemia? Evidence-Based Pract. 2016:19(2):14 doi: 10.1097/ 01.EBP. 0000541162.39463.

Mojtahedzadeh F, Kosaryan M, Mahdavi MR, et al. The effect of folic acid supplementation in beta-thalassemia major: a randomized placebo-controlled clinical trial. Arch Iran Med. 2006;9(3):266-8. PMID: 16859064.

Leung CF, Lao TT, Chang AM. Effect of folate supplement on pregnant women with beta-thalassaemia minor. Eur J Obstet Gynecol Reprod Biol. 1989;33(3):209-13. doi: 10.1016/0028-2243(89)90131-7.

Hossain A, Khatun MA, Islam M, Huque R. Enhancement of Antioxidant Quality of Green Leafy Vegetables upon Different Cooking Method. Prev Nutr Food Sci. 2017;22(3):216-22. doi: 10.3746/ pnf.2017.22.3.216.

Meccariello R, D'Angelo S. Impact of Polyphenolic-Food on Longevity: An Elixir of Life. An Overview. Antioxidants (Basel). 2021;10(4):507. doi: 10.3390/antiox10040507.

Ishikawa SI, Tamaki S, Arihara K, Itoh M. Egg yolk protein and egg yolk phosvitin inhibit calcium, magnesium, and iron absorptions in rats. J Food Sci. 2007;72(6):S412-9. doi: 10.1111/j.1750-3841.2007.00417.x.

Puglisi MJ, Fernandez ML. The Health Benefits of Egg Protein. Nutrients. 2022;14(14):2904. doi: 10.3390/nu14142904.

Cook JD, Noble NL, Morck TA, et al. Effect of fiber on nonheme iron absorption. Gastroenterology. 1983;85(6):1354-8. PMID: 6313466.

Piskin E, Cianciosi D, Gulec S, et al E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS Omega. 2022;7(24):20441-56. doi: 10.1021/acsomega.2c01833.

Disler PB, Lynch SR, Charlton RW, et al. The effect of tea on iron absorption. Gut. 1975;16(3):193-200. doi: 10.1136/gut.16.3.193.

Kaltwasser JP, Werner E, Schalk K, et al. Clinical trial on the effect of regular tea drinking on iron accumulation in genetic haemochromatosis. Gut. 1998;43(5):699-704. doi: 10.1136/gut.43.5.699.

Cross AJ, Harnly JM, Ferrucci LM, et al. Developing a heme iron database for meats according to meat type, cooking method and doneness level. Food Nutr Sci. 2012;3(7):905-13. doi: 10.4236/ fns. 2012.37120.

Osna NA, Donohue TM Jr, Kharbanda KK. Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol Res. 2017;38(2):147-61. PMID: 28988570.

Christides T, Sharp P. Sugars increase non-heme iron bioavailability in human epithelial intestinal and liver cells. PLoS One. 2013;8(12):e83031. doi: 10.1371/journal.pone.0083031.

Rippe JM, Sievenpiper JL, Lê KA, et al. What is the appropriate upper limit for added sugars consumption? Nutr Rev. 2017 ;75(1):18-36. doi: 10.1093/nutrit/nuw046.

Downloads

Published

14-06-2023

Issue

Section

REVIEWS CLINICAL ARTICLES, UPDATES, FOCUS ON

How to Cite

1.
Soliman AT, Yassin M, Alyafei F, Alaaraj N, Hamed N, Osman S, et al. Nutritional studies in patients with β-thalassemia major: A short review: Nutrition Studies in Beta Thalassemia Major. Acta Biomed [Internet]. 2023 Jun. 14 [cited 2024 Jul. 21];94(3):e2023187. Available from: https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/14732