Localized fat or adiposity: therapeutic classification Localized fat classification

Main Article Content

Petra Vega López


adipocyte, localized adiposity, fat distribution, leptin, lipogenesis


White adipose tissue is essential for energy storage, endocrine communication, and insulin sensitivity. However, its distribution may present some alterations, as is the case of localized adiposity made up of normal adipose tissue, which is one of the conditions that represent the highest demand in aesthetic medicine. The most common causes for its development are an increased caloric intake and decreased energy demand due to a sedentary lifestyle. Localized adiposity is usually chronic and progressive; treatment therefore requires a substantial learning curve from a team of healthcare professionals. In addition, it can significantly impact the patient and lead to important psychological problems. The traditional classification of localized adiposity involves several measurements: a) waist circumference, measured at the midline level between the costal margin and the iliac crest; b) hip circumference, measured at the level of the greater trochanters of the femur. Based on these measurements and other considerations for diagnosing and classifying localized adiposity, we have developed an algorithm that includes the following criteria: i) body mass index; ii) adipose tissue location; iii) degree of alteration of the underlying tissues; iv) aesthetic impact on body harmony; v) level of emotional discomfort it causes the patient. This algorithm aims to help determine the best therapeutic approach for each patient. It identifies five types of localized adiposity, with three subtypes, depending on their location.

Abstract 209 | PDF Downloads 201


1. Scarano A, Sbarbati A, Amore R, Iorio EL, Ferraro G, Amuso D. A New Treatment for Local Adiposity with Ascorbic Acid and Ascorbyl-Palmitate Solution: Clinical and Histological Study. Aesthetic Plast Surg. 2020 Oct;44(5):1604–12. https://pubmed.ncbi.nlm.nih.gov/32803279/
2. Speed MS, Jefsen OH, Børglum AD, Speed D, Østergaard SD. Investigating the association between body fat and depression via Mendelian randomization. Transl Psychiatry. 2019 Aug;9(1):184. https://pubmed.ncbi.nlm.nih.gov/31383844/
3. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012 Jul;126(1):126–32. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401553/
4. Insua-Nipoti EM. Etiopathogenesis and diagnosis of localized adiposities. Therapeutic protocol approach. Rev la Soc Española Med Estética. 2016;49. https://www.seme.org/revista/articulos/etiopatogenia-y-diagnostico-de-las-adiposidades-localizadas-propuesta-de-protocolo-terapeutico
5. Muir LA, Neeley CK, Meyer KA, Baker NA, Brosius AM, Washabaugh AR, et al. Adipose tissue fibrosis, hypertrophy, and hyperplasia: Correlations with diabetes in human obesity. Obesity (Silver Spring). 2016 Mar;24(3):597–605. https://pubmed.ncbi.nlm.nih.gov/26916240/
6. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, et al. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth. PLoS Comput Biol. 2009 Mar;5(3):e1000324. https://pubmed.ncbi.nlm.nih.gov/19325873/
7. Richard AJ, White U, Elks CM, Stephens JM. Adipose Tissue: Physiology to Metabolic Dysfunction. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al., editors. South Dartmouth (MA); 2000. https://www.ncbi.nlm.nih.gov/books/NBK555602/
8. Cinti S. The adipose organ at a glance. Dis Model Mech. 2012 Sep;5(5):588–94. https://pubmed.ncbi.nlm.nih.gov/22915020/
9. Chau YY, Bandiera R, Serrels A, Martínez-Estrada OM, Qing W, Lee M, et al. Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nat Cell Biol. 2014 Apr;16(4):367–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060514/
10. Craigie D. Case of Inflammation of the Adipose Tissue, Forming the Sheath of the Carotid Artery, Followed by Erosion and Perforation of the Arterial Tissue and Fatal Hemorrhage; with Some Remarks on the Peculiarities of Inflammation of the Adipose Tissue. Edinburgh Med Surg J. 1837 Oct;48(133):396–412. https://pubmed.ncbi.nlm.nih.gov/30331209/
11. Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987 Jul;237(4813):402–5. https://pubmed.ncbi.nlm.nih.gov/3299705/
12. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994 Dec;372(6505):425–32. https://pubmed.ncbi.nlm.nih.gov/7984236/
13. Chlouverakis C. Insulin resistance of parabiotic obese-hyperglycemic mice (obob). Horm Metab Res = Horm und Stoffwechselforsch = Horm Metab. 1972 May;4(3):143–8. https://pubmed.ncbi.nlm.nih.gov/5044222/
14. La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol. 2004 May;4(5):371–9. https://pubmed.ncbi.nlm.nih.gov/15122202/
15. Saetang J, Sangkhathat S. Role of innate lymphoid cells in obesity and metabolic disease (Review). Mol Med Rep. 2018 Jan;17(1):1403–12. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5780078/
16. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications. Int J Mol Sci. 2019 May;20(9). https://pubmed.ncbi.nlm.nih.gov/31085992/
17. Trouwborst I, Bowser SM, Goossens GH, Blaak EE. Ectopic Fat Accumulation in Distinct Insulin Resistant Phenotypes; Targets for Personalized Nutritional Interventions. Front Nutr. 2018;5:77. https://pubmed.ncbi.nlm.nih.gov/30234122/
18. White UA, Fitch MD, Beyl RA, Hellerstein MK, Ravussin E. Association of In Vivo Adipose Tissue Cellular Kinetics With Markers of Metabolic Health in Humans. J Clin Endocrinol Metab. 2017 Jul;102(7):2171–8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5505198/
19. Abate N, Garg A, Peshock RM, Stray-Gundersen J, Grundy SM. Relationships of generalized and regional adiposity to insulin sensitivity in men. J Clin Invest [Internet]. 1995 [cited 2023 Sep 13];96(1):88–98. Available from: https://pubmed.ncbi.nlm.nih.gov/7615840/
20. Strable MS, Ntambi JM. Genetic control of de novo lipogenesis: role in diet-induced obesity. Crit Rev Biochem Mol Biol. 2010 Jun;45(3):199–214. https://pubmed.ncbi.nlm.nih.gov/20218765/
21. Braun K, Oeckl J, Westermeier J, Li Y, Klingenspor M. Non-adrenergic control of lipolysis and thermogenesis in adipose tissues. J Exp Biol. 2018 Mar;221(Pt Suppl 1). https://pubmed.ncbi.nlm.nih.gov/29514884/
22. Luo L, Liu M. Adipose tissue in control of metabolism. J Endocrinol. 2016 Dec;231(3):R77–99. https://pubmed.ncbi.nlm.nih.gov/27935822/
23. Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015 Jul;36(7):461–70. https://pubmed.ncbi.nlm.nih.gov/26022934/
24. Blouin K, Veilleux A, Luu-The V, Tchernof A. Androgen metabolism in adipose tissue: recent advances. Mol Cell Endocrinol. 2009 Mar;301(1–2):97–103. https://pubmed.ncbi.nlm.nih.gov/19022338/
25. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998 Oct;395(6704):763–70. https://pubmed.ncbi.nlm.nih.gov/9796811/
26. Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, et al. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007 Mar;5(3):181–94. https://pubmed.ncbi.nlm.nih.gov/17339026/
27. Raman P, Khanal S. Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci. 2021 May;22(11). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8196747/
28. Cirillo P, Angri V, De Rosa S, Calì G, Petrillo G, Maresca F, et al. Pro-atherothrombotic effects of leptin in human coronary endothelial cells. Thromb Haemost. 2010 May;103(5):1065–75. https://pubmed.ncbi.nlm.nih.gov/20174754/
29. Dutta D, Ghosh S, Pandit K, Mukhopadhyay P, Chowdhury S. Leptin and cancer: Pathogenesis and modulation. Indian J Endocrinol Metab. 2012 Dec;16(Suppl 3):S596-600. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602989/
30. Munsell MF, Sprague BL, Berry DA, Chisholm G, Trentham-Dietz A. Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiol Rev. 2014;36(1):114–36. https://pubmed.ncbi.nlm.nih.gov/24375928/
31. Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetologia. 2012 Sep;55(9):2319–26. https://pubmed.ncbi.nlm.nih.gov/22688349/
32. Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016 Apr;8(2):101–9. https://pubmed.ncbi.nlm.nih.gov/26993044/
33. Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003 Jun;423(6941):762–9. https://pubmed.ncbi.nlm.nih.gov/12802337/
34. Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, et al. The hormone resistin links obesity to diabetes. Nature. 2001 Jan;409(6818):307–12. https://pubmed.ncbi.nlm.nih.gov/11201732/
35. Su KZ, Li YR, Zhang D, Yuan JH, Zhang CS, Liu Y, et al. Relation of Circulating Resistin to Insulin Resistance in Type 2 Diabetes and Obesity: A Systematic Review and Meta-Analysis. Vol. 10, Frontiers in physiology. 2019. p. 1399. https://pubmed.ncbi.nlm.nih.gov/31803062/
36. Jiang S, Park DW, Tadie JM, Gregoire M, Deshane J, Pittet JF, et al. Human resistin promotes neutrophil proinflammatory activation and neutrophil extracellular trap formation and increases severity of acute lung injury. J Immunol. 2014 May;192(10):4795–803. https://pubmed.ncbi.nlm.nih.gov/24719460/
37. Baker JF, Morales M, Qatanani M, Cucchiara A, Nackos E, Lazar MA, et al. Resistin levels in lupus and associations with disease-specific measures, insulin resistance, and coronary calcification. J Rheumatol. 2011 Nov;38(11):2369–75. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702914/
38. Lee SE, Kim HS. Human resistin in cardiovascular disease. J Smooth Muscle Res. 2012;48(1):27–35. https://pubmed.ncbi.nlm.nih.gov/22504487/
39. Filková M, Haluzík M, Gay S, Senolt L. The role of resistin as a regulator of inflammation: Implications for various human pathologies. Clin Immunol. 2009 Nov;133(2):157–70. https://pubmed.ncbi.nlm.nih.gov/19740705/
40. Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat Rev Endocrinol. 2015 Feb;11(2):90–100. https://pubmed.ncbi.nlm.nih.gov/25365922/
41. Frank AP, De Souza Santos R, Palmer BF, Clegg DJ. Determinants of body fat distribution in humans may provide insight about obesity-related health risks. J Lipid Res [Internet]. 2019 [cited 2023 Sep 13];60(10):1710–9. Available from: https://pubmed.ncbi.nlm.nih.gov/30097511/
42. Passaro A, Miselli MA, Sanz JM, Dalla Nora E, Morieri ML, Colonna R, et al. Gene expression regional differences in human subcutaneous adipose tissue. BMC Genomics. 2017;18(1):202. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-017-3564-2
43. Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues - the biology of pear shape. Biol Sex Differ. 2012 May;3(1):13. https://pubmed.ncbi.nlm.nih.gov/22651247/
44. Peprah K, MacDougall D. Liposuction for the Treatment of Lipedema: A Review of Clinical Effectiveness and Guidelines [Internet]. Liposuction Treat Lipedema A Rev Clin Eff Guidel [Internet]. 2019 [cited 2023 Sep 13]; Available from: https://pubmed.ncbi.nlm.nih.gov/31479212/
45. Salas-Salvadó J, Rubio MA, Barbany M, Moreno B. [SEEDO 2007 Consensus for the evaluation of overweight and obesity and the establishment of therapeutic intervention criteria]. Med Clin (Barc). 2007 Feb;128(5):184–96; quiz 1 p following 200. https://pubmed.ncbi.nlm.nih.gov/17298782/