Magnetic Resonance Imaging in Autism Spectrum Disorders: clinical and neuroradiological phenotypes

Magnetic Resonance Imaging in Autism Spectrum Disorders: clinical and neuroradiological phenotypes


  • Francesco Pizzolorusso
  • Maria Teresa Paparella
  • Ilaria Pizzolorusso
  • Federica Masino
  • Giuseppe Guglielmi


Autism spectrum disorders (ASDs), Magnetic Resonance Imaging (MRI), neurodevelopment disorders, neuroradiological phenotype


Background and aim: Autism Spectrum Disorders (ASDs) are a group of neurodevelopmental disorders that can severely compromise social and cognitive functions in childhood. Magnetic Resonance Imaging (MRI) currently represents the gold standard as an in vivo and non-invasive study of the human brain morphology. This work aims to search for possible links between clinical phenotypes and radiological anomalies that may be relevant and pathognomonic in the subsequent diagnosis of ASDs.

Methods: This is a retrospective study in which 132 patients (112 males and 20 females) with neurodevelopment disorders, including ASDs, were enrolled. The population study was divided into three groups considering their own pathological diagnosis. All patients included in this population underwent genetic screening and one or multiple 1.5T MRI scans were performed to evaluate potential anomalies of the corpus callosum, periventricular white matter, ventricular space, cerebellum, subarachnoid space and thalamus.

Results: Univariate analysis showed that the presence of MRI brain abnormalities was a significant variable in predicting the presence of ASDs.  Increased ventricular volume was one of the most replicated findings in ASDs patients since it was reported to be statistically significant both in uni- and multivariate analysis, resulting even as a potentially predictive factor of diagnosis.

Conclusions: This study can represent a starting point for the research of new radiological evidence that might be important to early diagnose ASDs and for making a differential diagnosis with all those conditions that mimic autistic traits, but which are not clinically connected to the spectrum disorder itself.


Brambilla P, Hardan A, di Nemi SU et Al. Brain anatomy and development in autism: review of structural MRI studies. Brain Res Bull. 2003 Oct 15;61(6):557-69. doi: 10.1016/j.brainresbull.2003.06.001. PMID: 14519452.

Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014 Mar 8;383(9920):896-910. doi: 10.1016/S0140-6736(13)61539-1. PMID: 24074734.

Fombonne E, Quirke S, Hagen A. Epidemiology of Pervasive Developmental Disorders. Autism Spectr. Disord. 90–111 (2013) doi:10.1093/MED/9780195371826.003.0007.

Elsabbagh M, Divan G, Koh YJ, et Al. Global prevalence of autism and other pervasive developmental disorders. Autism Res. 2012 Jun;5(3):160-79. doi: 10.1002/aur.239. PMID: 22495912.

Mattila ML, Kielinen M, Linna SL, et Al. Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. J Am Acad Child Adolesc Psychiatry. 2011 Jun;50(6):583-592.e11. doi: 10.1016/j.jaac.2011.04.001. PMID: 21621142.

Saemundsen E, Magnússon P, Georgsdóttir I, et Al. Prevalence of autism spectrum disorders in an Icelandic birth cohort. BMJ Open. 2013 Jun 20;3(6):e002748. doi: 10.1136/bmjopen-2013-002748. PMID: 23788511.

Kim YS, Leventhal BL, Koh YJ, et Al. Prevalence of autism spectrum disorders in a total population sample. Am J Psychiatry. 2011 Sep;168(9):904-12. doi: 10.1176/appi.ajp.2011.10101532. PMID: 21558103.

Idring S, Rai D, Dal H, Dalman C, Sturm H, Zander E, Lee BK, Serlachius E, Magnusson C. Autism spectrum disorders in the Stockholm Youth Cohort: design, prevalence and validity. PLoS One. 2012;7(7):e41280. doi: 10.1371/journal.pone.0041280. PMID: 22911770.

Jamain S, Quach H, Betancur C, et Al. Paris Autism Research International Sibpair Study. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet. 2003 May;34(1):27-9. doi: 10.1038/ng1136. PMID: 12669065.

Laumonnier F, Bonnet-Brilhault F, Gomot M, et Al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet. 2004 Mar;74(3):552-7. doi: 10.1086/382137. PMID: 14963808.

Durand CM, Betancur C, Boeckers TM, et Al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007 Jan;39(1):25-7. doi: 10.1038/ng1933. PMID: 17173049.

Rasalam AD, Hailey H, Williams JH, et Al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol. 2005 Aug;47(8):551-5. doi: 10.1017/s0012162205001076. PMID: 16108456.

American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association; 2013.

Gerges P, Bitar T, Hawat M, et Al. Risk and Protective Factors in Autism Spectrum Disorders: A Case Control Study in the Lebanese Population. Int J Environ Res Public Health. 2020 Aug 31;17(17):6323. doi: 10.3390/ijerph17176323. PMID: 32878029.

Movsas TZ, Pinto-Martin JA, Whitaker AH, et Al. Autism spectrum disorder is associated with ventricular enlargement in a low birth weight population. J Pediatr. 2013 Jul;163(1):73-8. doi: 10.1016/j.jpeds.2012.12.084. PMID: 23410601.

Piven J, Bailey J, Ranson BJ, et Al. An MRI study of the corpus callosum in autism. Am J Psychiatry. 1997 Aug;154(8):1051-6. doi: 10.1176/ajp.154.8.1051. PMID: 9247388.

Hazlett HC, Gu H, Munsell BC, et Al.; Clinical Sites; Data Coordinating Center; Image Processing Core; Statistical Analysis. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017 Feb 15;542(7641):348-351. doi: 10.1038/nature21369. PMID: 28202961.

Egaas B, Courchesne E, Saitoh O. Reduced size of corpus callosum in autism. Arch Neurol. 1995 Aug;52(8):794-801. doi: 10.1001/archneur.1995.00540320070014. PMID: 7639631.

Abell F, Krams M, Ashburner J, et Al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport. 1999 Jun 3;10(8):1647-51. doi: 10.1097/00001756-199906030-00005. PMID: 10501551.

Eilam-Stock T, Wu T, Spagna A, et Al. Neuroanatomical Alterations in High-Functioning Adults with Autism Spectrum Disorder. Front Neurosci. 2016 Jun 2;10:237. doi: 10.3389/fnins.2016.00237. PMID: 27313505.

Nicolson R, DeVito TJ, Vidal CN, et Al. Detection and mapping of hippocampal abnormalities in autism. Psychiatry Res. 2006 Nov 22;148(1):11-21. doi: 10.1016/j.pscychresns.2006.02.005. PMID: 17056234.

Turner AH, Greenspan KS, van Erp TGM. Pallidum and lateral ventricle volume enlargement in autism spectrum disorder. Psychiatry Res Neuroimaging. 2016 Jun 30;252:40-45. doi: 10.1016/j.pscychresns.2016.04.003. PMID: 27179315.

Wolfe FH, Auzias G, Deruelle C, et Al. Focal atrophy of the hypothalamus associated with third ventricle enlargement in autism spectrum disorder. Neuroreport. 2015 Dec 2;26(17):1017-22. doi: 10.1097/WNR.0000000000000461. PMID: 26445284.

Hardan AY, Minshew NJ, Harenski K, et Al. Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry. 2001 Jun;40(6):666-72. doi: 10.1097/00004583-200106000-00011. PMID: 11392344.

Haar S, Berman S, Behrmann M, et Al. Anatomical Abnormalities in Autism? Cereb Cortex. 2016 Apr;26(4):1440-52. doi: 10.1093/cercor/bhu242. PMID: 25316335.

Groen W, Teluij M, Buitelaar J, et Al. Amygdala and hippocampus enlargement during adolescence in autism. J Am Acad Child Adolesc Psychiatry. 2010 Jun;49(6):552-60. doi: 10.1016/j.jaac.2009.12.023. PMID: 20494265.







How to Cite

Pizzolorusso F, Paparella MT, Pizzolorusso I, Masino F, Guglielmi G. Magnetic Resonance Imaging in Autism Spectrum Disorders: clinical and neuroradiological phenotypes. Acta Biomed [Internet]. 2023 Apr. 24 [cited 2024 Jul. 17];94(2):e2023027. Available from: