Adoptive immunotherapies in neuro-oncology: classification, recent advances, and translational challenges

Main Article Content

Sabino Luzzi
Alice Giotta Lucifero
Ilaria Brambilla
Mariasole Magistrali
Mario Mosconi
Salvatore Savasta
Thomas Foiadelli

Keywords

Adoptive immunotherapies; CAR T cell; Immunotherapy; Malignant Brain Tumor; NK Cell.

Abstract

Background: Adoptive immunotherapies are among the pillars of ongoing biological breakthroughs in neuro-oncology, as their potential applications are tremendously wide. The present literature review comprehensively classified adoptive immunotherapies in neuro-oncology, provides an update, and overviews the main translational challenges of this approach. Methods: The PubMed/MEDLINE platform, Medical Subject Heading (MeSH) database, and ClinicalTrials.gov website were the sources. The MeSH terms “Immunotherapy, Adoptive,” “Cell- and Tissue-Based Therapy,” “Tissue Engineering,” and “Cell Engineering” were combined with “Central Nervous System,” and “Brain.” “Brain tumors” and “adoptive immunotherapy” were used for a further unrestricted search. Only articles published in the last 5 years were selected and further sorted based on the best match and relevance. The search terms “Central Nervous System Tumor,” “Malignant Brain Tumor,” “Brain Cancer,” “Brain Neoplasms,” and “Brain Tumor” were used on the ClinicalTrials.gov website. Results: A total of 79 relevant articles and 16 trials were selected. T therapies include chimeric antigen receptor T (CAR T) cell therapy and T cell receptor (TCR) transgenic therapy. Natural killer (NK) cell-based therapies are another approach; combinations are also possible. Trials in phase 1 and 2 comprised 69% and 31% of the studies, respectively, 8 of which were concluded. CAR T cell therapy targeting epidermal growth factor receptor variant III (EGFRvIII) was demonstrated to reduce the recurrence rate of glioblastoma after standard-of-care treatment. Conclusion: Adoptive immunotherapies can be classified as T, NK, and NKT cell-based. CAR T cell therapy redirected against EGFRvIII has been shown to be the most promising treatment for glioblastoma. Overcoming immune tolerance and immune escape are the main translational challenges in the near future of neuro-oncology.

Downloads

Download data is not yet available.
Abstract 539 | PDF Downloads 149

References

1. Luzzi S, Crovace AM, Del Maestro M, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11): e02818. https://doi.org/10.1016/j.heliyon.2019.e02818.
2. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6): 803-820. https://doi.org/10.1007/s00401-016-1545-1.
3. Lefrère JJ, Berche P. [Doctor Brown-Sequard's therapy]. Ann Endocrinol (Paris). 2010;71(2): 69-75. https://doi.org/10.1016/j.ando.2010.01.003.
4. Foiadelli T, Piccorossi A, Sacchi L, et al. Clinical characteristics of headache in Italian adolescents aged 11-16 years: a cross-sectional questionnaire school-based study. Ital J Pediatr. 2018;44(1): 44. https://doi.org/10.1186/s13052-018-0486-9.
5. Garone G, Reale A, Vanacore N, et al. Acute ataxia in paediatric emergency departments: a multicentre Italian study. Arch Dis Child. 2019;104(8): 768-774. https://doi.org/10.1136/archdischild-2018-315487.
6. Nosadini M, Granata T, Matricardi S, et al. Relapse risk factors in anti-N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol. 2019;61(9): 1101-1107. https://doi.org/10.1111/dmcn.14267.
7. Parisi P, Vanacore N, Belcastro V, et al. Clinical guidelines in pediatric headache: evaluation of quality using the AGREE II instrument. J Headache Pain. 2014;15: 57. https://doi.org/10.1186/1129-2377-15-57.
8. Yang JC, Rosenberg SA. Adoptive T-Cell Therapy for Cancer. Adv Immunol. 2016;130: 279-294. https://doi.org/10.1016/bs.ai.2015.12.006.
9. Matosevic S. Viral and Nonviral Engineering of Natural Killer Cells as Emerging Adoptive Cancer Immunotherapies. J Immunol Res. 2018;2018: 4054815. https://doi.org/10.1155/2018/4054815.
10. Wang Z, Wu Z, Liu Y, Han W. New development in CAR-T cell therapy. J Hematol Oncol. 2017;10(1): 53. https://doi.org/10.1186/s13045-017-0423-1.
11. Singh N, Shi J, June CH, Ruella M. Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer. Curr Hematol Malig Rep. 2017;12(6): 522-529. https://doi.org/10.1007/s11899-017-0417-7.
12. Majzner RG, Mackall CL. Tumor Antigen Escape from CAR T-cell Therapy. Cancer Discov. 2018;8(10): 1219-1226. https://doi.org/10.1158/2159-8290.Cd-18-0442.
13. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17(9): 1025-1036. https://doi.org/10.1038/ni.3518.
14. Kalaitsidou M, Kueberuwa G, Schütt A, Gilham DE. CAR T-cell therapy: toxicity and the relevance of preclinical models. Immunotherapy. 2015;7(5): 487-497. https://doi.org/10.2217/imt.14.123.
15. Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev. 2014;257(1): 56-71. https://doi.org/10.1111/imr.12132.
16. Rotolo R, Leuci V, Donini C, et al. CAR-Based Strategies beyond T Lymphocytes: Integrative Opportunities for Cancer Adoptive Immunotherapy. Int J Mol Sci. 2019;20(11). https://doi.org/10.3390/ijms20112839.
17. Schultz L, Mackall C. Driving CAR T cell translation forward. Sci Transl Med. 2019;11(481). https://doi.org/10.1126/scitranslmed.aaw2127.
18. Maldini CR, Ellis GI, Riley JL. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol. 2018;18(10): 605-616. https://doi.org/10.1038/s41577-018-0042-2.
19. Pender MP, Csurhes PA, Smith C, et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. JCI Insight. 2018;3(22). https://doi.org/10.1172/jci.insight.124714.
20. Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6: 47. https://doi.org/10.1186/1756-8722-6-47.
21. Srivastava S, Riddell SR. Engineering CAR-T cells: Design concepts. Trends Immunol. 2015;36(8): 494-502. https://doi.org/10.1016/j.it.2015.06.004.
22. Lee YH, Kim CH. Evolution of chimeric antigen receptor (CAR) T cell therapy: current status and future perspectives. Arch Pharm Res. 2019;42(7): 607-616. https://doi.org/10.1007/s12272-019-01136-x.
23. Kwatra MM. A Rational Approach to Target the Epidermal Growth Factor Receptor in Glioblastoma. Curr Cancer Drug Targets. 2017;17(3): 290-296. https://doi.org/10.2174/1568009616666161227091522.
24. Padfield E, Ellis HP, Kurian KM. Current Therapeutic Advances Targeting EGFR and EGFRvIII in Glioblastoma. Front Oncol. 2015;5: 5. https://doi.org/10.3389/fonc.2015.00005.
25. Ren PP, Li M, Li TF, Han SY. Anti-EGFRvIII Chimeric Antigen Receptor-Modified T Cells for Adoptive Cell Therapy of Glioblastoma. Curr Pharm Des. 2017;23(14): 2113-2116. https://doi.org/10.2174/1381612823666170316125402.
26. Brown CE, Alizadeh D, Starr R, et al. Regression of Glioblastoma after Chimeric Antigen Receptor T-Cell Therapy. N Engl J Med. 2016;375(26): 2561-2569. https://doi.org/10.1056/NEJMoa1610497.
27. Brown CE, Badie B, Barish ME, et al. Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma. Clin Cancer Res. 2015;21(18): 4062-4072. https://doi.org/10.1158/1078-0432.Ccr-15-0428.
28. Brown CE, Aguilar B, Starr R, et al. Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma. Mol Ther. 2018;26(1): 31-44. https://doi.org/10.1016/j.ymthe.2017.10.002.
29. Krenciute G, Prinzing BL, Yi Z, et al. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants. Cancer Immunol Res. 2017;5(7): 571-581. https://doi.org/10.1158/2326-6066.Cir-16-0376.
30. Ahmed N, Salsman VS, Kew Y, et al. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res. 2010;16(2): 474-485. https://doi.org/10.1158/1078-0432.Ccr-09-1322.
31. Hegde M, Corder A, Chow KK, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Mol Ther. 2013;21(11): 2087-2101. https://doi.org/10.1038/mt.2013.185.
32. Chow KK, Naik S, Kakarla S, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Mol Ther. 2013;21(3): 629-637. https://doi.org/10.1038/mt.2012.210.
33. Muranski P, Boni A, Wrzesinski C, et al. Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go? Nat Clin Pract Oncol. 2006;3(12): 668-681. https://doi.org/10.1038/ncponc0666.
34. Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005;202(7): 907-912. https://doi.org/10.1084/jem.20050732.
35. Gattinoni L, Powell DJ, Jr., Rosenberg SA, Restifo NP. Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol. 2006;6(5): 383-393. https://doi.org/10.1038/nri1842.
36. Heemskerk MHM. T-cell receptor gene transfer for the treatment of leukemia and other tumors. Haematologica. 2010;95(1): 15-19. https://doi.org/10.3324/haematol.2009.016022.
37. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN. Immunotherapy through TCR gene transfer. Nat Immunol. 2001;2(10): 957-961. https://doi.org/10.1038/ni1001-957.
38. Park TS, Rosenberg SA, Morgan RA. Treating cancer with genetically engineered T cells. Trends Biotechnol. 2011;29(11): 550-557. https://doi.org/10.1016/j.tibtech.2011.04.009.
39. Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic cell therapy: a new paradigm in therapeutics. Circ Res. 2015;116(1): 12-15. https://doi.org/10.1161/circresaha.114.305495.
40. Golán I, Rodríguez de la Fuente L, Costoya JA. NK Cell-Based Glioblastoma Immunotherapy. Cancers (Basel). 2018;10(12). https://doi.org/10.3390/cancers10120522.
41. Gras Navarro A, Kmiecik J, Leiss L, et al. NK cells with KIR2DS2 immunogenotype have a functional activation advantage to efficiently kill glioblastoma and prolong animal survival. J Immunol. 2014;193(12): 6192-6206. https://doi.org/10.4049/jimmunol.1400859.
42. Yvon ES, Burga R, Powell A, et al. Cord blood natural killer cells expressing a dominant negative TGF-β receptor: Implications for adoptive immunotherapy for glioblastoma. Cytotherapy. 2017;19(3): 408-418. https://doi.org/10.1016/j.jcyt.2016.12.005.
43. Murakami T, Nakazawa T, Natsume A, et al. Novel Human NK Cell Line Carrying CAR Targeting EGFRvIII Induces Antitumor Effects in Glioblastoma Cells. Anticancer Res. 2018;38(9): 5049-5056. https://doi.org/10.21873/anticanres.12824.
44. Kmiecik J, Gras Navarro A, Poli A, Planagumà JP, Zimmer J, Chekenya M. Combining NK cells and mAb9.2.27 to combat NG2-dependent and anti-inflammatory signals in glioblastoma. Oncoimmunology. 2014;3(1): e27185. https://doi.org/10.4161/onci.27185.
45. Poli A, Wang J, Domingues O, et al. Targeting glioblastoma with NK cells and mAb against NG2/CSPG4 prolongs animal survival. Oncotarget. 2013;4(9): 1527-1546. https://doi.org/10.18632/oncotarget.1291.
46. Seino K, Motohashi S, Fujisawa T, Nakayama T, Taniguchi M. Natural killer T cell-mediated antitumor immune responses and their clinical applications. Cancer Sci. 2006;97(9): 807-812. https://doi.org/10.1111/j.1349-7006.2006.00257.x.
47. Tang B, Wu W, Wei X, Li Y, Ren G, Fan W. Activation of glioma cells generates immune tolerant NKT cells. J Biol Chem. 2014;289(50): 34595-34600. https://doi.org/10.1074/jbc.M114.614503.
48. Yu W, Liang S, Zhang C. Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med. 2018;20(4): 452-474. https://doi.org/10.1007/s12017-018-8507-9.
49. Sakata J, Sasayama T, Tanaka K, et al. MicroRNA regulating stanniocalcin-1 is a metastasis and dissemination promoting factor in glioblastoma. J Neurooncol. 2019;142(2): 241-251. https://doi.org/10.1007/s11060-019-03113-2.
50. Pyaram K, Yadav VN. Advances in NKT cell Immunotherapy for Glioblastoma. J Cancer Sci Ther. 2018;10(6). https://doi.org/10.4172/1948-5956.1000533.
51. Dhodapkar KM, Cirignano B, Chamian F, et al. Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer. 2004;109(6): 893-899. https://doi.org/10.1002/ijc.20050.
52. van der Vliet HJ, Molling JW, Nishi N, et al. Polarization of Valpha24+ Vbeta11+ natural killer T cells of healthy volunteers and cancer patients using alpha-galactosylceramide-loaded and environmentally instructed dendritic cells. Cancer Res. 2003;63(14): 4101-4106.
53. Giaccone G, Punt CJ, Ando Y, et al. A phase I study of the natural killer T-cell ligand alpha-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res. 2002;8(12): 3702-3709.
54. Wenger A, Werlenius K, Hallner A, et al. Determinants for Effective ALECSAT Immunotherapy Treatment on Autologous Patient-Derived Glioblastoma Stem Cells. Neoplasia. 2018;20(1): 25-31. https://doi.org/10.1016/j.neo.2017.10.006.
55. Morgan RA, Johnson LA, Davis JL, et al. Recognition of glioma stem cells by genetically modified T cells targeting EGFRvIII and development of adoptive cell therapy for glioma. Hum Gene Ther. 2012;23(10): 1043-1053. https://doi.org/10.1089/hum.2012.041.
56. Kruse CA, Cepeda L, Owens B, Johnson SD, Stears J, Lillehei KO. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol Immunother. 1997;45(2): 77-87. https://doi.org/10.1007/s002620050405.
57. Hickey MJ, Malone CC, Erickson KL, et al. Cellular and vaccine therapeutic approaches for gliomas. J Transl Med. 2010;8: 100. https://doi.org/10.1186/1479-5876-8-100.
58. Hickey MJ, Malone CC, Erickson KE, et al. Implementing preclinical study findings to protocol design: translational studies with alloreactive CTL for gliomas. Am J Transl Res. 2012;4(1): 114-126.
59. Dillman RO, Duma CM, Ellis RA, et al. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J Immunother. 2009;32(9): 914-919. https://doi.org/10.1097/CJI.0b013e3181b2910f.
60. Sloan AE, Dansey R, Zamorano L, et al. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony-stimulating factor and adoptive transfer of anti-CD3-activated lymphocytes. Neurosurg Focus. 2000;9(6): e9. https://doi.org/10.3171/foc.2000.9.6.10.
61. Cheng CY, Shetty R, Sekhar LN. Microsurgical Resection of a Large Intraventricular Trigonal Tumor: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2018;15(6): E92-E93. https://doi.org/10.1093/ons/opy068.
62. Palumbo P, Lombardi F, Siragusa G, et al. Involvement of NOS2 Activity on Human Glioma Cell Growth, Clonogenic Potential, and Neurosphere Generation. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092801.
63. Bellantoni G, Guerrini F, Del Maestro M, Galzio R, Luzzi S. Simple schwannomatosis or an incomplete Coffin-Siris? Report of a particular case. eNeurologicalSci. 2019;14: 31-33. https://doi.org/10.1016/j.ensci.2018.11.021.
64. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica. 2016;131: 803-820. https://doi.org/10.1007/s00401-016-1545-1.
65. Ricci A, Di Vitantonio H, De Paulis D, et al. Cortical aneurysms of the middle cerebral artery: A review of the literature. Surg Neurol Int. 2017;8: 117. https://doi.org/10.4103/sni.sni_50_17.
66. Luzzi S, Del Maestro M, Bongetta D, et al. Onyx Embolization Before the Surgical Treatment of Grade III Spetzler-Martin Brain Arteriovenous Malformations: Single-Center Experience and Technical Nuances. World Neurosurg. 2018;116: e340-e353. https://doi.org/10.1016/j.wneu.2018.04.203.
67. Luzzi S, Gallieni M, Del Maestro M, Trovarelli D, Ricci A, Galzio R. Giant and Very Large Intracranial Aneurysms: Surgical Strategies and Special Issues. Acta Neurochir Suppl. 2018;129: 25-31. https://doi.org/10.1007/978-3-319-73739-3_4.
68. Luzzi S, Elia A, Del Maestro M, et al. Indication, Timing, and Surgical Treatment of Spontaneous Intracerebral Hemorrhage: Systematic Review and Proposal of a Management Algorithm. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2019.01.016.
69. Luzzi S, Del Maestro M, Elia A, et al. Morphometric and Radiomorphometric Study of the Correlation Between the Foramen Magnum Region and the Anterior and Posterolateral Approaches to Ventral Intradural Lesions. Turk Neurosurg. 2019. https://doi.org/10.5137/1019-5149.JTN.26052-19.2.
70. Luzzi S, Zoia C, Rampini AD, et al. Lateral Transorbital Neuroendoscopic Approach for Intraconal Meningioma of the Orbital Apex: Technical Nuances and Literature Review. World Neurosurg. 2019;131: 10-17. https://doi.org/10.1016/j.wneu.2019.07.152.
71. Pascual-Castroviejo I, Lopez-Pereira P, Savasta S, Lopez-Gutierrez JC, Lago CM, Cisternino M. Neurofibromatosis type 1 with external genitalia involvement presentation of 4 patients. J Pediatr Surg. 2008;43(11): 1998-2003. https://doi.org/10.1016/j.jpedsurg.2008.01.074.
72. Salpietro V, Mankad K, Kinali M, et al. Pediatric idiopathic intracranial hypertension and the underlying endocrine-metabolic dysfunction: a pilot study. J Pediatr Endocrinol Metab. 2014;27(1-2): 107-115. https://doi.org/10.1515/jpem-2013-0156.
73. Savasta S, Chiapedi S, Perrini S, Tognato E, Corsano L, Chiara A. Pai syndrome: a further report of a case with bifid nose, lipoma, and agenesis of the corpus callosum. Childs Nerv Syst. 2008;24(6): 773-776. https://doi.org/10.1007/s00381-008-0613-9.
74. Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci. 2015;370(1680): 20150017. https://doi.org/10.1098/rstb.2015.0017.
75. Kenderian SS, Ruella M, Gill S, Kalos M. Chimeric antigen receptor T-cell therapy to target hematologic malignancies. Cancer Res. 2014;74(22): 6383-6389. https://doi.org/10.1158/0008-5472.Can-14-1530.
76. Ruella M, Kalos M. Adoptive immunotherapy for cancer. Immunol Rev. 2014;257(1): 14-38. https://doi.org/10.1111/imr.12136.
77. Hou B, Tang Y, Li W, Zeng Q, Chang D. Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. Dis Markers. 2019;2019: 3425291. https://doi.org/10.1155/2019/3425291.
78. Wainwright DA, Chang AL, Dey M, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20): 5290-5301. https://doi.org/10.1158/1078-0432.Ccr-14-0514.
79. Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro Oncol. 2011;13(12): 1308-1323. https://doi.org/10.1093/neuonc/nor134.
80. Zhang J, Wang L. The Emerging World of TCR-T Cell Trials Against Cancer: A Systematic Review. Technol Cancer Res Treat. 2019;18: 1533033819831068. https://doi.org/10.1177/1533033819831068.
81. Kmiecik J, Poli A, Brons NH, et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol. 2013;264(1-2): 71-83. https://doi.org/10.1016/j.jneuroim.2013.08.013.
82. Wang Z, Chen W, Zhang X, Cai Z, Huang W. A long way to the battlefront: CAR T cell therapy against solid cancers. J Cancer. 2019;10(14): 3112-3123. https://doi.org/10.7150/jca.30406.
83. Villa A, Navarro-Galve B, Bueno C, Franco S, Blasco MA, Martinez-Serrano A. Long-term molecular and cellular stability of human neural stem cell lines. Exp Cell Res. 2004;294(2): 559-570. https://doi.org/10.1016/j.yexcr.2003.11.025.

Most read articles by the same author(s)

1 2 > >>