Gene therapies for high-grade gliomas: from the bench to the bedside

Gene therapies for high-grade gliomas: from the bench to the bedside

Authors

  • Alice Giotta Lucifero Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
  • Sabino Luzzi Neurosurgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy; Neurosurgery Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
  • Ilaria Brambilla Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy
  • Carmen Guarracino Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy
  • Mario Mosconi Orthopaedic and Traumatology Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
  • Thomas Foiadelli Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy
  • Salvatore Savasta Pediatric Clinic, Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, Uni-versity of Pavia, Pavia, Italy

Keywords:

Gene Therapy; Glioblastoma; High Grade Glioma; Suicide Gene Therapies; Virotherapy.

Abstract

Background: Gene therapy is the most attractive therapeutic approach against high-grade gliomas (HGGs). This is because of its theoretical capability to rework gene makeup in order to yield oncolytic effects. However, some factors still limit the upgrade of these therapies at a clinical level of evidence. We report an overview of glioblastoma gene therapies, mainly focused on the rationale, classification, advances and translational challenges. Methods: An extensive review of the online literature on gene therapy for HGGs was carried out. The PubMed/MEDLINE and ClinicalTrials.gov websites were the main sources. Articles in English published in the last five years were sorted according to the best match with the multiple relevant keywords chosen. A descriptive analysis of the clinical trials was also reported. Results: A total of 85 articles and 45 clinical trials were selected. The main types of gene therapies are the suicide gene, tumor suppressor gene, immunomodulatory gene and oncolytic therapies (virotherapies). The transfer of genetic material entails replication-deficient and replication-competent oncolytic viruses and nanoparticles, such as liposomes and cationic polymers, each of them having advantages and drawbacks. Forty-eight clinical trials were collected, mostly phase I/II. Conclusion: Gene therapies constitute a promising approach against HGGs. The selection of new and more effective target genes, the implementation of gene-delivery vectors capable of greater and safer spreading capacity, and the optimization of the administration routes constitute the main translational challenges of this approach.

References

Jiang T, Mao Y, Ma W, et al. CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Lett. 2016;375(2): 263-273. https://doi.org/10.1016/j.canlet.2016.01.024.

Ricard D, Idbaih A, Ducray F, Lahutte M, Hoang-Xuan K, Delattre JY. Primary brain tumours in adults. Lancet. 2012;379(9830): 1984-1996. https://doi.org/10.1016/S0140-6736(11)61346-9.

Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro Oncol. 2014;16 Suppl 4: iv1-63. https://doi.org/10.1093/neuonc/nou223.

Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5): 459-466. https://doi.org/10.1016/S1470-2045(09)70025-7.

Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10): 987-996. https://doi.org/10.1056/NEJMoa043330.

Cheng CY, Shetty R, Sekhar LN. Microsurgical Resection of a Large Intraventricular Trigonal Tumor: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2018;15(6): E92-E93. https://doi.org/10.1093/ons/opy068.

Palumbo P, Lombardi F, Siragusa G, et al. Involvement of NOS2 Activity on Human Glioma Cell Growth, Clonogenic Potential, and Neurosphere Generation. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092801.

Bellantoni G, Guerrini F, Del Maestro M, Galzio R, Luzzi S. Simple schwannomatosis or an incomplete Coffin-Siris? Report of a particular case. eNeurologicalSci. 2019;14: 31-33. https://doi.org/10.1016/j.ensci.2018.11.021.

Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9: 1-25. https://doi.org/10.1146/annurev-pathol-011110-130324.

Auffinger B, Spencer D, Pytel P, Ahmed AU, Lesniak MS. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother. 2015;15(7): 741-752. https://doi.org/10.1586/14737175.2015.1051968.

Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol. 2012;181(4): 1126-1141. https://doi.org/10.1016/j.ajpath.2012.06.030.

Luzzi S, Crovace AM, Del Maestro M, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11): e02818. https://doi.org/10.1016/j.heliyon.2019.e02818.

Maguire CA, Ramirez SH, Merkel SF, Sena-Esteves M, Breakefield XO. Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics. 2014;11(4): 817-839. https://doi.org/10.1007/s13311-014-0299-5.

Okura H, Smith CA, Rutka JT. Gene therapy for malignant glioma. Mol Cell Ther. 2014;2: 21. https://doi.org/10.1186/2052-8426-2-21.

Wirth T, Yla-Herttuala S. Gene Therapy Used in Cancer Treatment. Biomedicines. 2014;2(2): 149-162. https://doi.org/10.3390/biomedicines2020149.

Kwiatkowska A, Nandhu MS, Behera P, Chiocca EA, Viapiano MS. Strategies in gene therapy for glioblastoma. Cancers (Basel). 2013;5(4): 1271-1305. https://doi.org/10.3390/cancers5041271.

Caffery B, Lee JS, Alexander-Bryant AA. Vectors for Glioblastoma Gene Therapy: Viral & Non-Viral Delivery Strategies. Nanomaterials (Basel). 2019;9(1). https://doi.org/10.3390/nano9010105.

Collins M, Thrasher A. Gene therapy: progress and predictions. Proc Biol Sci. 2015;282(1821): 20143003. https://doi.org/10.1098/rspb.2014.3003.

Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol. 2015;17 Suppl 2: ii24-ii36. https://doi.org/10.1093/neuonc/nou355.

Choong CJ, Baba K, Mochizuki H. Gene therapy for neurological disorders. Expert Opin Biol Ther. 2016;16(2): 143-159. https://doi.org/10.1517/14712598.2016.1114096.

Simonato M, Bennett J, Boulis NM, et al. Progress in gene therapy for neurological disorders. Nat Rev Neurol. 2013;9(5): 277-291. https://doi.org/10.1038/nrneurol.2013.56.

Murphy AM, Rabkin SD. Current status of gene therapy for brain tumors. Transl Res. 2013;161(4): 339-354. https://doi.org/10.1016/j.trsl.2012.11.003.

Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017;120: 63-80. https://doi.org/10.1016/j.neuropharm.2016.02.013.

Kroeger KM, Muhammad AK, Baker GJ, et al. Gene therapy and virotherapy: novel therapeutic approaches for brain tumors. Discov Med. 2010;10(53): 293-304.

Karjoo Z, Chen X, Hatefi A. Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev. 2016;99(Pt A): 113-128. https://doi.org/10.1016/j.addr.2015.05.009.

Black ME, Newcomb TG, Wilson HM, Loeb LA. Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci U S A. 1996;93(8): 3525-3529. https://doi.org/10.1073/pnas.93.8.3525.

Izquierdo M, Martin V, de Felipe P, et al. Human malignant brain tumor response to herpes simplex thymidine kinase (HSVtk)/ganciclovir gene therapy. Gene Ther. 1996;3(6): 491-495.

Prados MD, McDermott M, Chang SM, et al. Treatment of progressive or recurrent glioblastoma multiforme in adults with herpes simplex virus thymidine kinase gene vector-producer cells followed by intravenous ganciclovir administration: a phase I/II multi-institutional trial. J Neurooncol. 2003;65(3): 269-278. https://doi.org/10.1023/b:neon.0000003588.18644.9c.

Ezzeddine ZD, Martuza RL, Platika D, et al. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol. 1991;3(6): 608-614.

Eck SL, Alavi JB, Alavi A, et al. Treatment of advanced CNS malignancies with the recombinant adenovirus H5.010RSVTK: a phase I trial. Hum Gene Ther. 1996;7(12): 1465-1482. https://doi.org/10.1089/hum.1996.7.12-1465.

Sandmair AM, Loimas S, Puranen P, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther. 2000;11(16): 2197-2205. https://doi.org/10.1089/104303400750035726.

Immonen A, Vapalahti M, Tyynela K, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther. 2004;10(5): 967-972. https://doi.org/10.1016/j.ymthe.2004.08.002.

Rainov NG, Heidecke V. Clinical development of experimental virus-mediated gene therapy for malignant glioma. Anticancer Agents Med Chem. 2011;11(8): 739-747. https://doi.org/10.2174/187152011797378724.

Germano IM, Fable J, Gultekin SH, Silvers A. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol. 2003;65(3): 279-289. https://doi.org/10.1023/b:neon.0000003657.95085.56.

Ostertag D, Amundson KK, Lopez Espinoza F, et al. Brain tumor eradication and prolonged survival from intratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol. 2012;14(2): 145-159. https://doi.org/10.1093/neuonc/nor199.

Mitchell LA, Lopez Espinoza F, Mendoza D, et al. Toca 511 gene transfer and treatment with the prodrug, 5-fluorocytosine, promotes durable antitumor immunity in a mouse glioma model. Neuro Oncol. 2017;19(7): 930-939. https://doi.org/10.1093/neuonc/nox037.

Dong Y, Wen P, Manome Y, et al. In vivo replication-deficient adenovirus vector-mediated transduction of the cytosine deaminase gene sensitizes glioma cells to 5-fluorocytosine. Hum Gene Ther. 1996;7(6): 713-720. https://doi.org/10.1089/hum.1996.7.6-713.

Adachi Y, Tamiya T, Ichikawa T, et al. Experimental gene therapy for brain tumors using adenovirus-mediated transfer of cytosine deaminase gene and uracil phosphoribosyltransferase gene with 5-fluorocytosine. Hum Gene Ther. 2000;11(1): 77-89. https://doi.org/10.1089/10430340050016175.

Perez OD, Logg CR, Hiraoka K, et al. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther. 2012;20(9): 1689-1698. https://doi.org/10.1038/mt.2012.83.

Huang TT, Hlavaty J, Ostertag D, et al. Toca 511 gene transfer and 5-fluorocytosine in combination with temozolomide demonstrates synergistic therapeutic efficacy in a temozolomide-sensitive glioblastoma model. Cancer Gene Ther. 2013;20(10): 544-551. https://doi.org/10.1038/cgt.2013.51.

Bharara S, Sorscher EJ, Gillespie GY, et al. Antibiotic-mediated chemoprotection enhances adaptation of E. coli PNP for herpes simplex virus-based glioma therapy. Hum Gene Ther. 2005;16(3): 339-347. https://doi.org/10.1089/hum.2005.16.339.

Hong JS, Waud WR, Levasseur DN, et al. Excellent in vivo bystander activity of fludarabine phosphate against human glioma xenografts that express the escherichia coli purine nucleoside phosphorylase gene. Cancer Res. 2004;64(18): 6610-6615. https://doi.org/10.1158/0008-5472.CAN-04-0012.

Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216): 1061-1068. https://doi.org/10.1038/nature07385.

Bogler O, Huang HJ, Kleihues P, Cavenee WK. The p53 gene and its role in human brain tumors. Glia. 1995;15(3): 308-327. https://doi.org/10.1002/glia.440150311.

England B, Huang T, Karsy M. Current understanding of the role and targeting of tumor suppressor p53 in glioblastoma multiforme. Tumour Biol. 2013;34(4): 2063-2074. https://doi.org/10.1007/s13277-013-0871-3.

Lang FF, Yung WK, Sawaya R, Tofilon PJ. Adenovirus-mediated p53 gene therapy for human gliomas. Neurosurgery. 1999;45(5): 1093-1104. https://doi.org/10.1097/00006123-199911000-00016.

Li H, Alonso-Vanegas M, Colicos MA, et al. Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res. 1999;5(3): 637-642.

Gomez-Manzano C, Fueyo J, Kyritsis AP, et al. Adenovirus-mediated transfer of the p53 gene produces rapid and generalized death of human glioma cells via apoptosis. Cancer Res. 1996;56(4): 694-699.

Kanu OO, Hughes B, Di C, et al. Glioblastoma Multiforme Oncogenomics and Signaling Pathways. Clin Med Oncol. 2009;3: 39-52. https://doi.org/10.4137/cmo.s1008.

Chintala SK, Fueyo J, Gomez-Manzano C, et al. Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene. 1997;15(17): 2049-2057. https://doi.org/10.1038/sj.onc.1201382.

Dunn GP, Rinne ML, Wykosky J, et al. Emerging insights into the molecular and cellular basis of glioblastoma. Genes Dev. 2012;26(8): 756-784. https://doi.org/10.1101/gad.187922.112.

Lu W, Zhou X, Hong B, Liu J, Yue Z. Suppression of invasion in human U87 glioma cells by adenovirus-mediated co-transfer of TIMP-2 and PTEN gene. Cancer Lett. 2004;214(2): 205-213. https://doi.org/10.1016/j.canlet.2003.08.012.

Abe T, Terada K, Wakimoto H, et al. PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res. 2003;63(9): 2300-2305.

Natsume A, Yoshida J. Gene therapy for high-grade glioma: current approaches and future directions. Cell Adh Migr. 2008;2(3): 186-191. https://doi.org/10.4161/cam.2.3.6278.

Tobias A, Ahmed A, Moon KS, Lesniak MS. The art of gene therapy for glioma: a review of the challenging road to the bedside. J Neurol Neurosurg Psychiatry. 2013;84(2): 213-222. https://doi.org/10.1136/jnnp-2012-302946.

Quinn K, Galbraith SE, Sheahan BJ, Atkins GJ. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing interferon-beta on the progression of experimental autoimmune encephalomyelitis. Mol Med Rep. 2008;1(3): 335-342. https://doi.org/10.3892/mmr.1.3.335.

Wolpert F, Happold C, Reifenberger G, et al. Interferon-beta Modulates the Innate Immune Response against Glioblastoma Initiating Cells. PLoS One. 2015;10(10): e0139603. https://doi.org/10.1371/journal.pone.0139603.

GuhaSarkar D, Neiswender J, Su Q, Gao G, Sena-Esteves M. Intracranial AAV-IFN-beta gene therapy eliminates invasive xenograft glioblastoma and improves survival in orthotopic syngeneic murine model. Mol Oncol. 2017;11(2): 180-193. https://doi.org/10.1002/1878-0261.12020.

Enderlin M, Kleinmann EV, Struyf S, et al. TNF-alpha and the IFN-gamma-inducible protein 10 (IP-10/CXCL-10) delivered by parvoviral vectors act in synergy to induce antitumor effects in mouse glioblastoma. Cancer Gene Ther. 2009;16(2): 149-160. https://doi.org/10.1038/cgt.2008.62.

Colombo F, Barzon L, Franchin E, et al. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005;12(10): 835-848. https://doi.org/10.1038/sj.cgt.7700851.

Okada H, Attanucci J, Tahara H, et al. Characterization and transduction of a retroviral vector encoding human interleukin-4 and herpes simplex virus-thymidine kinase for glioma tumor vaccine therapy. Cancer Gene Ther. 2000;7(3): 486-494. https://doi.org/10.1038/sj.cgt.7700140.

Kaufmann JK, Chiocca EA. Glioma virus therapies between bench and bedside. Neuro Oncol. 2014;16(3): 334-351. https://doi.org/10.1093/neuonc/not310.

Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med. 1999;5(8): 881-887. https://doi.org/10.1038/11320.

Grandi P, Peruzzi P, Reinhart B, Cohen JB, Chiocca EA, Glorioso JC. Design and application of oncolytic HSV vectors for glioblastoma therapy. Expert Rev Neurother. 2009;9(4): 505-517. https://doi.org/10.1586/ern.09.9.

Granelli-Piperno A, Zhong L, Haslett P, Jacobson J, Steinman RM. Dendritic cells, infected with vesicular stomatitis virus-pseudotyped HIV-1, present viral antigens to CD4+ and CD8+ T cells from HIV-1-infected individuals. J Immunol. 2000;165(11): 6620-6626. https://doi.org/10.4049/jimmunol.165.11.6620.

Markert JM, Liechty PG, Wang W, et al. Phase Ib trial of mutant herpes simplex virus G207 inoculated pre-and post-tumor resection for recurrent GBM. Mol Ther. 2009;17(1): 199-207. https://doi.org/10.1038/mt.2008.228.

Kambara H, Okano H, Chiocca EA, Saeki Y. An oncolytic HSV-1 mutant expressing ICP34.5 under control of a nestin promoter increases survival of animals even when symptomatic from a brain tumor. Cancer Res. 2005;65(7): 2832-2839. https://doi.org/10.1158/0008-5472.CAN-04-3227.

Heise C, Sampson-Johannes A, Williams A, McCormick F, Von Hoff DD, Kirn DH. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med. 1997;3(6): 639-645. https://doi.org/10.1038/nm0697-639.

Chiocca EA, Abbed KM, Tatter S, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-Attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther. 2004;10(5): 958-966. https://doi.org/10.1016/j.ymthe.2004.07.021.

Fueyo J, Alemany R, Gomez-Manzano C, et al. Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst. 2003;95(9): 652-660. https://doi.org/10.1093/jnci/95.9.652.

Fueyo J, Gomez-Manzano C, Alemany R, et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene. 2000;19(1): 2-12. https://doi.org/10.1038/sj.onc.1203251.

Jiang H, Gomez-Manzano C, Lang FF, Alemany R, Fueyo J. Oncolytic adenovirus: preclinical and clinical studies in patients with human malignant gliomas. Curr Gene Ther. 2009;9(5): 422-427. https://doi.org/10.2174/156652309789753356.

Yong RL, Shinojima N, Fueyo J, et al. Human bone marrow-derived mesenchymal stem cells for intravascular delivery of oncolytic adenovirus Delta24-RGD to human gliomas. Cancer Res. 2009;69(23): 8932-8940. https://doi.org/10.1158/0008-5472.CAN-08-3873.

Peng KW, Facteau S, Wegman T, O'Kane D, Russell SJ. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med. 2002;8(5): 527-531. https://doi.org/10.1038/nm0502-527.

Peng KW, TenEyck CJ, Galanis E, Kalli KR, Hartmann LC, Russell SJ. Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res. 2002;62(16): 4656-4662.

Merrill MK, Bernhardt G, Sampson JH, Wikstrand CJ, Bigner DD, Gromeier M. Poliovirus receptor CD155-targeted oncolysis of glioma. Neuro Oncol. 2004;6(3): 208-217. https://doi.org/10.1215/S1152851703000577.

Dobrikova EY, Goetz C, Walters RW, et al. Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol. 2012;86(5): 2750-2759. https://doi.org/10.1128/JVI.06427-11.

Gromeier M, Lachmann S, Rosenfeld M, Gutin P, Wimmer E. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E.. Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 97: 6803-6808. Proceedings of the National Academy of Sciences of the United States of America. 2000;97: 6803-6808. https://doi.org/10.1073/pnas.97.12.6803.

Lachmann R. Herpes simplex virus-based vectors. Int J Exp Pathol. 2004;85(4): 177-190. https://doi.org/10.1111/j.0959-9673.2004.00383.x.

Jiang W, Kim BY, Rutka JT, Chan WC. Advances and challenges of nanotechnology-based drug delivery systems. Expert Opin Drug Deliv. 2007;4(6): 621-633. https://doi.org/10.1517/17425247.4.6.621.

Yoshida J, Mizuno M. Clinical Gene Therapy for Brain Tumors. Liposomal Delivery of Anticancer Molecule to Glioma. Journal of Neuro-Oncology. 2003;65(3): 261-267. https://doi.org/10.1023/B:NEON.0000003655.03671.fa.

Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7: 4391-4408. https://doi.org/10.2147/ijn.S33838.

Rungta RL, Choi HB, Lin PJ, et al. Lipid Nanoparticle Delivery of siRNA to Silence Neuronal Gene Expression in the Brain. Mol Ther Nucleic Acids. 2013;2: e136. https://doi.org/10.1038/mtna.2013.65.

Yoshida J, Mizuno M, Fujii M, et al. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther. 2004;15(1): 77-86. https://doi.org/10.1089/10430340460732472.

Sun X, Pang Z, Ye H, et al. Co-delivery of pEGFP-hTRAIL and paclitaxel to brain glioma mediated by an angiopep-conjugated liposome. Biomaterials. 2012;33(3): 916-924. https://doi.org/10.1016/j.biomaterials.2011.10.035.

Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine) and its role in gene delivery. J Control Release. 1999;60(2-3): 149-160. https://doi.org/10.1016/s0168-3659(99)00090-5.

Li J, Gu B, Meng Q, et al. The use of myristic acid as a ligand of polyethylenimine/DNA nanoparticles for targeted gene therapy of glioblastoma. Nanotechnology. 2011;22(43): 435101. https://doi.org/10.1088/0957-4484/22/43/435101.

Zhan C, Meng Q, Li Q, Feng L, Zhu J, Lu W. Cyclic RGD-polyethylene glycol-polyethylenimine for intracranial glioblastoma-targeted gene delivery. Chem Asian J. 2012;7(1): 91-96. https://doi.org/10.1002/asia.201100570.

Richardson SC, Pattrick NG, Man YK, Ferruti P, Duncan R. Poly(amidoamine)s as potential nonviral vectors: ability to form interpolyelectrolyte complexes and to mediate transfection in vitro. Biomacromolecules. 2001;2(3): 1023-1028. https://doi.org/10.1021/bm010079f.

Han L, Zhang A, Wang H, et al. Tat-BMPs-PAMAM conjugates enhance therapeutic effect of small interference RNA on U251 glioma cells in vitro and in vivo. Hum Gene Ther. 2010;21(4): 417-426. https://doi.org/10.1089/hum.2009.087.

Bai CZ, Choi S, Nam K, An S, Park JS. Arginine modified PAMAM dendrimer for interferon beta gene delivery to malignant glioma. Int J Pharm. 2013;445(1-2): 79-87. https://doi.org/10.1016/j.ijpharm.2013.01.057.

Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2): 121-131. https://doi.org/10.1038/nm.3793.

Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs. Science. 2011;333(6040): 307. https://doi.org/10.1126/science.1207773.

Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346(6213): 1258096. https://doi.org/10.1126/science.1258096.

Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4): 347-355. https://doi.org/10.1038/nbt.2842.

Millimaggi DF, Norcia VD, Luzzi S, Alfiero T, Galzio RJ, Ricci A. Minimally Invasive Transforaminal Lumbar Interbody Fusion with Percutaneous Bilateral Pedicle Screw Fixation for Lumbosacral Spine Degenerative Diseases. A Retrospective Database of 40 Consecutive Cases and Literature Review. Turk Neurosurg. 2018;28(3): 454-461. https://doi.org/10.5137/1019-5149.JTN.19479-16.0.

Ricci A, Di Vitantonio H, De Paulis D, et al. Cortical aneurysms of the middle cerebral artery: A review of the literature. Surg Neurol Int. 2017;8: 117. https://doi.org/10.4103/sni.sni_50_17.

Luzzi S, Del Maestro M, Bongetta D, et al. Onyx Embolization Before the Surgical Treatment of Grade III Spetzler-Martin Brain Arteriovenous Malformations: Single-Center Experience and Technical Nuances. World Neurosurg. 2018;116: e340-e353. https://doi.org/10.1016/j.wneu.2018.04.203.

Luzzi S, Elia A, Del Maestro M, et al. Indication, Timing, and Surgical Treatment of Spontaneous Intracerebral Hemorrhage: Systematic Review and Proposal of a Management Algorithm. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2019.01.016.

Bansal K, Engelhard HH. Gene therapy for brain tumors. Current Oncology Reports. 2000;2(5): 463-472. https://doi.org/10.1007/s11912-000-0067-z.

Kaufmann KB, Buning H, Galy A, Schambach A, Grez M. Gene therapy on the move. EMBO Mol Med. 2013;5(11): 1642-1661. https://doi.org/10.1002/emmm.201202287.

Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther. 2003;10(11): 935-940. https://doi.org/10.1038/sj.gt.3302036.

Cesana D, Ranzani M, Volpin M, et al. Uncovering and dissecting the genotoxicity of self-inactivating lentiviral vectors in vivo. Mol Ther. 2014;22(4): 774-785. https://doi.org/10.1038/mt.2014.3.

Conde J, Larguinho M, Cordeiro A, et al. Gold-nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis. Nanotoxicology. 2014;8(5): 521-532. https://doi.org/10.3109/17435390.2013.802821.

Luzzi S, Maestro MD, Elia A, et al. Morphometric and Radiomorphometric Study of the Correlation Between the Foramen Magnum Region and the Anterior and Posterolateral Approaches to Ventral Intradural Lesions. Turk Neurosurg. 2019;29(6): 875-886. https://doi.org/10.5137/1019-5149.JTN.26052-19.2.

Luzzi S, Zoia C, Rampini AD, et al. Lateral Transorbital Neuroendoscopic Approach for Intraconal Meningioma of the Orbital Apex: Technical Nuances and Literature Review. World Neurosurg. 2019;131: 10-17. https://doi.org/10.1016/j.wneu.2019.07.152.

Ahmad MZ, Akhter S, Rahman Z, et al. Nanometric gold in cancer nanotechnology: current status and future prospect. J Pharm Pharmacol. 2013;65(5): 634-651. https://doi.org/10.1111/jphp.12017.

Delong RK, Reynolds CM, Malcolm Y, Schaeffer A, Severs T, Wanekaya A. Functionalized gold nanoparticles for the binding, stabilization, and delivery of therapeutic DNA, RNA, and other biological macromolecules. Nanotechnol Sci Appl. 2010;3: 53-63. https://doi.org/10.2147/NSA.S8984.

Downloads

Published

30-06-2020

How to Cite

1.
Giotta Lucifero A, Luzzi S, Brambilla I, Guarracino C, Mosconi M, Foiadelli T, et al. Gene therapies for high-grade gliomas: from the bench to the bedside. Acta Biomed [Internet]. 2020 Jun. 30 [cited 2024 Jul. 27];91(7-S):32-50. Available from: https://www.mattioli1885journals.com/index.php/actabiomedica/article/view/9953