Targeting the medulloblastoma: a molecular-based approach

Main Article Content

Sabino Luzzi
Alice Giotta Lucifero
Ilaria Brambilla
Simona Semeria Mantelli
Mario Mosconi
Thomas Foiadelli
Salvatore Savasta

Keywords

Adoptive Immunotherapies; Medulloblastoma; Sonic Hedgehog Medulloblastoma; Target Therapy; Wingless Medulloblastoma.

Abstract

Background: The lack of success of standard therapies for medulloblastoma has highlighted the need to plan a new therapeutic approach. The purpose of this article is to provide an overview of the novel treatment strategies based on the molecular characterization and risk categories of the medulloblastoma, also focusing on up-to-date relevant clinical trials and the challenges in translating tailored approaches into clinical practice. Methods: An online search of the literature was carried out on the PubMed/MEDLINE and ClinicalTrials.gov websites about molecular classification of medulloblastomas, ongoing clinical trials and new treatment strategies. Only articles in the English language and published in the last five years were selected. The research was refined based on the best match and relevance. Results: A total 58 articles and 51 clinical trials were analyzed. Trials were of phase I, II, and I/II in 55%, 33% and 12% of the cases, respectively. Target and adoptive immunotherapies were the treatment strategies for newly diagnosed and recurrent medulloblastoma in 71% and 29% of the cases, respectively. Conclusion: Efforts are focused on the fine-tuning of target therapies and immunotherapies, including agents directed to specific pathways, engineered T-cells and oncoviruses. The blood-brain barrier, chemoresistance, the tumor microenvironment and cancer stem cells are the main translational challenges to be overcome in order to optimize medulloblastoma treatment, reduce the long-term morbidity and increase the overall survival.

Downloads

Download data is not yet available.
Abstract 499 | PDF Downloads 128

References

1. Smoll NR, Drummond KJ. The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children. J Clin Neurosci. 2012;19(11): 1541-1544. https://doi.org/10.1016/j.jocn.2012.04.009.
2. Ramaswamy V, Remke M, Bouffet E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016;131(6): 821-831. https://doi.org/10.1007/s00401-016-1569-6.
3. Pui CH, Gajjar AJ, Kane JR, Qaddoumi IA, Pappo AS. Challenging issues in pediatric oncology. Nat Rev Clin Oncol. 2011;8(9): 540-549. https://doi.org/10.1038/nrclinonc.2011.95.
4. Salloum R, Chen Y, Yasui Y, et al. Late Morbidity and Mortality Among Medulloblastoma Survivors Diagnosed Across Three Decades: A Report From the Childhood Cancer Survivor Study. J Clin Oncol. 2019;37(9): 731-740. https://doi.org/10.1200/JCO.18.00969.
5. Ning MS, Perkins SM, Dewees T, Shinohara ET. Evidence of high mortality in long term survivors of childhood medulloblastoma. J Neurooncol. 2015;122(2): 321-327. https://doi.org/10.1007/s11060-014-1712-y.
6. Pascual-Castroviejo I, Lopez-Pereira P, Savasta S, Lopez-Gutierrez JC, Lago CM, Cisternino M. Neurofibromatosis type 1 with external genitalia involvement presentation of 4 patients. J Pediatr Surg. 2008;43(11): 1998-2003. https://doi.org/10.1016/j.jpedsurg.2008.01.074.
7. Savasta S, Chiapedi S, Perrini S, Tognato E, Corsano L, Chiara A. Pai syndrome: a further report of a case with bifid nose, lipoma, and agenesis of the corpus callosum. Childs Nerv Syst. 2008;24(6): 773-776. https://doi.org/10.1007/s00381-008-0613-9.
8. Salpietro V, Mankad K, Kinali M, et al. Pediatric idiopathic intracranial hypertension and the underlying endocrine-metabolic dysfunction: a pilot study. J Pediatr Endocrinol Metab. 2014;27(1-2): 107-115. https://doi.org/10.1515/jpem-2013-0156.
9. Nosadini M, Granata T, Matricardi S, et al. Relapse risk factors in anti-N-methyl-D-aspartate receptor encephalitis. Dev Med Child Neurol. 2019;61(9): 1101-1107. https://doi.org/10.1111/dmcn.14267.
10. Cheng CY, Shetty R, Sekhar LN. Microsurgical Resection of a Large Intraventricular Trigonal Tumor: 3-Dimensional Operative Video. Oper Neurosurg (Hagerstown). 2018;15(6): E92-E93. https://doi.org/10.1093/ons/opy068.
11. Palumbo P, Lombardi F, Siragusa G, et al. Involvement of NOS2 Activity on Human Glioma Cell Growth, Clonogenic Potential, and Neurosphere Generation. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092801.
12. Luzzi S, Crovace AM, Del Maestro M, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11): e02818. https://doi.org/10.1016/j.heliyon.2019.e02818.
13. Luzzi S, Giotta Lucifero A, Del Maestro M, et al. Anterolateral Approach for Retrostyloid Superior Parapharyngeal Space Schwannomas Involving the Jugular Foramen Area: A 20-Year Experience. World Neurosurg. 2019;132: e40-e52. https://doi.org/10.1016/j.wneu.2019.09.006.
14. Spena G, Roca E, Guerrini F, et al. Risk factors for intraoperative stimulation-related seizures during awake surgery: an analysis of 109 consecutive patients. J Neurooncol. 2019;145(2): 295-300. https://doi.org/10.1007/s11060-019-03295-9.
15. Antonosante A, Brandolini L, d'Angelo M, et al. Autocrine CXCL8-dependent invasiveness triggers modulation of actin cytoskeletal network and cell dynamics. Aging (Albany NY). 2020;12(2): 1928-1951. https://doi.org/10.18632/aging.102733.
16. Taylor MD, Northcott PA, Korshunov A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012;123(4): 465-472. https://doi.org/10.1007/s00401-011-0922-z.
17. Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547(7663): 311-317. https://doi.org/10.1038/nature22973.
18. Northcott PA, Jones DT, Kool M, et al. Medulloblastomics: the end of the beginning. Nat Rev Cancer. 2012;12(12): 818-834. https://doi.org/10.1038/nrc3410.
19. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6): 803-820. https://doi.org/10.1007/s00401-016-1545-1.
20. Parisi P, Vanacore N, Belcastro V, et al. Clinical guidelines in pediatric headache: evaluation of quality using the AGREE II instrument. J Headache Pain. 2014;15: 57. https://doi.org/10.1186/1129-2377-15-57.
21. Foiadelli T, Piccorossi A, Sacchi L, et al. Clinical characteristics of headache in Italian adolescents aged 11-16 years: a cross-sectional questionnaire school-based study. Ital J Pediatr. 2018;44(1): 44. https://doi.org/10.1186/s13052-018-0486-9.
22. Garone G, Reale A, Vanacore N, et al. Acute ataxia in paediatric emergency departments: a multicentre Italian study. Arch Dis Child. 2019;104(8): 768-774. https://doi.org/10.1136/archdischild-2018-315487.
23. Kool M, Korshunov A, Remke M, et al. Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 2012;123(4): 473-484. https://doi.org/10.1007/s00401-012-0958-8.
24. Thompson MC, Fuller C, Hogg TL, et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol. 2006;24(12): 1924-1931. https://doi.org/10.1200/JCO.2005.04.4974.
25. Northcott PA, Korshunov A, Witt H, et al. Medulloblastoma comprises four distinct molecular variants. J Clin Oncol. 2011;29(11): 1408-1414. https://doi.org/10.1200/JCO.2009.27.4324.
26. Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 2004;5(4): 209-218. https://doi.org/10.1016/S1470-2045(04)01424-X.
27. Jones DT, Jager N, Kool M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012;488(7409): 100-105. https://doi.org/10.1038/nature11284.
28. Pugh TJ, Weeraratne SD, Archer TC, et al. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature. 2012;488(7409): 106-110. https://doi.org/10.1038/nature11329.
29. Robinson G, Parker M, Kranenburg TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012;488(7409): 43-48. https://doi.org/10.1038/nature11213.
30. de Haas T, Hasselt N, Troost D, et al. Molecular risk stratification of medulloblastoma patients based on immunohistochemical analysis of MYC, LDHB, and CCNB1 expression. Clin Cancer Res. 2008;14(13): 4154-4160. https://doi.org/10.1158/1078-0432.CCR-07-4159.
31. Park TS, Hoffman HJ, Hendrick EB, Humphreys RP, Becker LE. Medulloblastoma: clinical presentation and management. Experience at the hospital for sick children, toronto, 1950-1980. J Neurosurg. 1983;58(4): 543-552. https://doi.org/10.3171/jns.1983.58.4.0543.
32. Gajjar AJ, Robinson GW. Medulloblastoma-translating discoveries from the bench to the bedside. Nat Rev Clin Oncol. 2014;11(12): 714-722. https://doi.org/10.1038/nrclinonc.2014.181.
33. Northcott PA, Shih DJ, Peacock J, et al. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature. 2012;488(7409): 49-56. https://doi.org/10.1038/nature11327.
34. Northcott PA, Hielscher T, Dubuc A, et al. Pediatric and adult sonic hedgehog medulloblastomas are clinically and molecularly distinct. Acta Neuropathol. 2011;122(2): 231-240. https://doi.org/10.1007/s00401-011-0846-7.
35. Kool M, Jones DT, Jager N, et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell. 2014;25(3): 393-405. https://doi.org/10.1016/j.ccr.2014.02.004.
36. Hallahan AR, Pritchard JI, Hansen S, et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res. 2004;64(21): 7794-7800. https://doi.org/10.1158/0008-5472.CAN-04-1813.
37. Ayrault O, Zhao H, Zindy F, Qu C, Sherr CJ, Roussel MF. Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells. Cancer Res. 2010;70(13): 5618-5627. https://doi.org/10.1158/0008-5472.CAN-09-3740.
38. Ellison DW, Dalton J, Kocak M, et al. Medulloblastoma: clinicopathological correlates of SHH, WNT, and non-SHH/WNT molecular subgroups. Acta Neuropathol. 2011;121(3): 381-396. https://doi.org/10.1007/s00401-011-0800-8.
39. Rausch T, Jones DT, Zapatka M, et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 2012;148(1-2): 59-71. https://doi.org/10.1016/j.cell.2011.12.013.
40. Gibson P, Tong Y, Robinson G, et al. Subtypes of medulloblastoma have distinct developmental origins. Nature. 2010;468(7327): 1095-1099. https://doi.org/10.1038/nature09587.
41. Skowron P, Ramaswamy V, Taylor MD. Genetic and molecular alterations across medulloblastoma subgroups. J Mol Med (Berl). 2015;93(10): 1075-1084. https://doi.org/10.1007/s00109-015-1333-8.
42. Kumar R, Liu APY, Northcott PA. Medulloblastoma genomics in the modern molecular era. Brain Pathol. 2019. https://doi.org/10.1111/bpa.12804.
43. Bar EE, Chaudhry A, Lin A, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10): 2524-2533. https://doi.org/10.1634/stemcells.2007-0166.
44. Berman DM, Karhadkar SS, Hallahan AR, et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science. 2002;297(5586): 1559-1561. https://doi.org/10.1126/science.1073733.
45. Menyhart O, Giangaspero F, Gyorffy B. Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas. J Hematol Oncol. 2019;12(1): 29. https://doi.org/10.1186/s13045-019-0712-y.
46. Rahman S, Sowa ME, Ottinger M, et al. The Brd4 extraterminal domain confers transcription activation independent of pTEFb by recruiting multiple proteins, including NSD3. Mol Cell Biol. 2011;31(13): 2641-2652. https://doi.org/10.1128/MCB.01341-10.
47. McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med. 2014;4(10). https://doi.org/10.1101/cshperspect.a014266.
48. Wojtalla A, Salm F, Christiansen DG, et al. Novel agents targeting the IGF-1R/PI3K pathway impair cell proliferation and survival in subsets of medulloblastoma and neuroblastoma. PLoS One. 2012;7(10): e47109. https://doi.org/10.1371/journal.pone.0047109.
49. Zhukova N, Ramaswamy V, Remke M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013;31(23): 2927-2935. https://doi.org/10.1200/JCO.2012.48.5052.
50. Kunkele A, De Preter K, Heukamp L, et al. Pharmacological activation of the p53 pathway by nutlin-3 exerts anti-tumoral effects in medulloblastomas. Neuro Oncol. 2012;14(7): 859-869. https://doi.org/10.1093/neuonc/nos115.
51. Sengupta R, Dubuc A, Ward S, et al. CXCR4 activation defines a new subgroup of Sonic hedgehog-driven medulloblastoma. Cancer Res. 2012;72(1): 122-132. https://doi.org/10.1158/0008-5472.CAN-11-1701.
52. Aguilera D, Mazewski C, Fangusaro J, et al. Response to bevacizumab, irinotecan, and temozolomide in children with relapsed medulloblastoma: a multi-institutional experience. Childs Nerv Syst. 2013;29(4): 589-596. https://doi.org/10.1007/s00381-012-2013-4.
53. Thompson EM, Keir ST, Venkatraman T, et al. The role of angiogenesis in Group 3 medulloblastoma pathogenesis and survival. Neuro Oncol. 2017;19(9): 1217-1227. https://doi.org/10.1093/neuonc/nox033.
54. Nellan A, Rota C, Majzner R, et al. Durable regression of Medulloblastoma after regional and intravenous delivery of anti-HER2 chimeric antigen receptor T cells. J Immunother Cancer. 2018;6(1): 30. https://doi.org/10.1186/s40425-018-0340-z.
55. Saylors RL, 3rd, Stine KC, Sullivan J, et al. Cyclophosphamide plus topotecan in children with recurrent or refractory solid tumors: a Pediatric Oncology Group phase II study. J Clin Oncol. 2001;19(15): 3463-3469. https://doi.org/10.1200/JCO.2001.19.15.3463.
56. Wolff JE, Westphal S, Molenkamp G, et al. Treatment of paediatric pontine glioma with oral trophosphamide and etoposide. Br J Cancer. 2002;87(9): 945-949. https://doi.org/10.1038/sj.bjc.6600552.
57. Friedman GK, Moore BP, Nan L, et al. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol. 2016;18(2): 227-235. https://doi.org/10.1093/neuonc/nov123.
58. Markert JM, Razdan SN, Kuo HC, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22(5): 1048-1055. https://doi.org/10.1038/mt.2014.22.
59. Hutzen B, Bid HK, Houghton PJ, et al. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer. 2014;14: 206. https://doi.org/10.1186/1471-2407-14-206.
60. Luzzi S, Elia A, Del Maestro M, et al. Indication, Timing, and Surgical Treatment of Spontaneous Intracerebral Hemorrhage: Systematic Review and Proposal of a Management Algorithm. World Neurosurg. 2019. https://doi.org/10.1016/j.wneu.2019.01.016.
61. Millimaggi DF, Norcia VD, Luzzi S, Alfiero T, Galzio RJ, Ricci A. Minimally Invasive Transforaminal Lumbar Interbody Fusion with Percutaneous Bilateral Pedicle Screw Fixation for Lumbosacral Spine Degenerative Diseases. A Retrospective Database of 40 Consecutive Cases and Literature Review. Turk Neurosurg. 2018;28(3): 454-461. https://doi.org/10.5137/1019-5149.JTN.19479-16.0.
62. Cimmino F, Scoppettuolo MN, Carotenuto M, et al. Norcantharidin impairs medulloblastoma growth by inhibition of Wnt/beta-catenin signaling. J Neurooncol. 2012;106(1): 59-70. https://doi.org/10.1007/s11060-011-0645-y.
63. Zinke J, Schneider FT, Harter PN, et al. beta-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol Cancer. 2015;14: 17. https://doi.org/10.1186/s12943-015-0294-4.
64. Phoenix TN, Patmore DM, Boop S, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016;29(4): 508-522. https://doi.org/10.1016/j.ccell.2016.03.002.
65. Houschyar KS, Tapking C, Borrelli MR, et al. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol. 2018;6: 170. https://doi.org/10.3389/fcell.2018.00170.
66. Galluzzi L, Spranger S, Fuchs E, Lopez-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol. 2019;29(1): 44-65. https://doi.org/10.1016/j.tcb.2018.08.005.
67. Remke M, Hielscher T, Korshunov A, et al. FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J Clin Oncol. 2011;29(29): 3852-3861. https://doi.org/10.1200/JCO.2011.36.2798.
68. Robinson GW, Orr BA, Wu G, et al. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J Clin Oncol. 2015;33(24): 2646-2654. https://doi.org/10.1200/JCO.2014.60.1591.
69. Yauch RL, Dijkgraaf GJ, Alicke B, et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science. 2009;326(5952): 572-574. https://doi.org/10.1126/science.1179386.
70. Metcalfe C, Alicke B, Crow A, et al. PTEN loss mitigates the response of medulloblastoma to Hedgehog pathway inhibition. Cancer Res. 2013;73(23): 7034-7042. https://doi.org/10.1158/0008-5472.CAN-13-1222.
71. Kahn SA, Wang X, Nitta RT, et al. Notch1 regulates the initiation of metastasis and self-renewal of Group 3 medulloblastoma. Nat Commun. 2018;9(1): 4121. https://doi.org/10.1038/s41467-018-06564-9.
72. Luzzi S, Zoia C, Rampini AD, et al. Lateral Transorbital Neuroendoscopic Approach for Intraconal Meningioma of the Orbital Apex: Technical Nuances and Literature Review. World Neurosurg. 2019;131: 10-17. https://doi.org/10.1016/j.wneu.2019.07.152.
73. Arnaout MM, Luzzi S, Galzio R, Aziz K. Supraorbital keyhole approach: Pure endoscopic and endoscope-assisted perspective. Clin Neurol Neurosurg. 2020;189: 105623. https://doi.org/10.1016/j.clineuro.2019.105623.
74. Catanzaro G, Curcio M, Cirillo G, et al. Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma. Int J Pharm. 2017;517(1-2): 168-174. https://doi.org/10.1016/j.ijpharm.2016.12.017.
75. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm. 2014;11(8): 2755-2763. https://doi.org/10.1021/mp500113p.
76. Schuller U, Heine VM, Mao J, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell. 2008;14(2): 123-134. https://doi.org/10.1016/j.ccr.2008.07.005.
77. Huang GH, Xu QF, Cui YH, Li N, Bian XW, Lv SQ. Medulloblastoma stem cells: Promising targets in medulloblastoma therapy. Cancer Sci. 2016;107(5): 583-589. https://doi.org/10.1111/cas.12925.
78. Ehrhardt M, Craveiro RB, Holst MI, Pietsch T, Dilloo D. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy. Oncotarget. 2015;6(2): 802-813. https://doi.org/10.18632/oncotarget.2742.
79. Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci. 2016;107(1): 5-11. https://doi.org/10.1111/cas.12817.
80. Islam F, Gopalan V, Smith RA, Lam AK. Translational potential of cancer stem cells: A review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res. 2015;335(1): 135-147. https://doi.org/10.1016/j.yexcr.2015.04.018.
81. Yu L, Baxter PA, Zhao X, et al. A single intravenous injection of oncolytic picornavirus SVV-001 eliminates medulloblastomas in primary tumor-based orthotopic xenograft mouse models. Neuro Oncol. 2011;13(1): 14-27. https://doi.org/10.1093/neuonc/noq148.
82. Shih DJ, Northcott PA, Remke M, et al. Cytogenetic prognostication within medulloblastoma subgroups. J Clin Oncol. 2014;32(9): 886-896. https://doi.org/10.1200/jco.2013.50.9539.

Most read articles by the same author(s)

1 2 > >>