Thermal discomfort in healthcare workers during the COVID-19 pandemic

Main Article Content

Marco Lembo https://orcid.org/0000-0003-3879-0426
Carmela Vedetta
Umberto Moscato
Michele del Gaudio

Keywords

Coronavirus, COVID-19, Thermal discomfort, Personal Protection Equipment, Occupational exposure, Healthcare workers

Abstract

Introduction: Due to the COVID-19 pandemic, healthcare workers are now required to use additional personal protective equipment (PPEs) to protect themselves against the virus. That led to an increased clothing insulation which is negatively affecting the perceived healthcare workers’ thermal sensation. Objectives: While demonstrating through software simulations the potential level of thermal discomfort healthcare workers involved in the COVID-19 emergency can be subjected to, this work aims at identifying measures to improve thermal sensation perception and acceptable thermal conditions for medical personnel. Methods: After having obtained the insulation values of individual clothing used by staff during COVID-19 emergency through the use of a thermal well-being evaluation software, the Fanger indexes (PMV - Predicted Mean Vote and PPD - Predicted Percentage of Dissatisfied) were calculated in order to estimate staff satisfaction to microclimatic conditions. Results: The use of COVID-19 additional PPEs with an air temperature equal to 22 °C (normally considered optimal) brings the PMV index equal to 0.6, which corresponds to 11.8 % being unsatisfied (PPD) due to perceived heat. Discussion: The use of additional protective devices significantly increases the clothing insulation level, facilitating the onset of conditions of thermal discomfort in the health workers. Workers engaged in the execution of nasopharyngeal swabs were most affected by the summer weather conditions and certainly represent the most critical category, for which it would be recommended to implement a higher turnover of service to reduce individual exposure time and consequent discomfort.

Abstract 1035 | PDF Downloads 405

References

1. Inail scheda tecnica “I dati sulle denunce da Covid-19 (monitoraggio al 31 luglio 2020)” https://www.inail.it/cs/internet/docs/alg-scheda-tecnica-covid-31luglio.pdf
2. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020; 395(10223): 514-523.
3. Otter JA, Donskey C, Yezli S, Douthwaite S, Goldenberg SD, Weber DJ. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. J Hosp Infect 2016; 92: 235-250.
4. Dowell SF, Simmerman JM, Erdman DD, Wu JS, Chaovavanich A, Javadi M, et al. Severe acute respiratory syndrome coronavirus on hospital surfaces. Clin Infect Dis 2004; 39: 652-657.
5. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020; 104(3): 246-251.
6. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020; 382(16): 1564-1567.
7. Indicazioni sugli impianti di ventilazione/climatizzazione in strutture comunitarie non sanitarie e in ambienti domestici in relazione alla diffusione del virus SARS-CoV-2. Gruppo di Lavoro ISS Ambiente-Rifiuti COVID-19. Versione del 25 maggio 2020. Roma: Istituto Superiore di Sanità; 2020. (Rapporto ISS COVID-19, n. 33/2020).
8. Indicazioni ad interim per un utilizzo razionale delle protezioni per infezione da SARS-CoV-2 nelle attività sanitarie e sociosanitarie (assistenza a soggetti affetti da COVID-19) nell’attuale scenario emergenziale SARS-CoV-2 Gruppo di Lavoro ISS Prevenzione e Controllo delle Infezioni Versione del 10 maggio 2020.
9. D.P.R. del 14 gennaio 1997 n. 37 “Approvazione dell’atto di indirizzo e coordinamento alle regioni e alle province autonome di Trento e di Bolzano, in materia di requisiti strutturali, tecnologici ed organizzativi minimi per l’esercizio delle attività sanitarie da parte delle strutture pubbliche e private”
10. Protocollo per la riduzione del rischio da diffusione del SARS-CoV2-19 nelle operazioni di gestione e manutenzione degli impianti di climatizzazione e ventilazione esistenti. AICARR 2020
11. del Gaudio M, VedettaC. Microclima e qualità dell’aria in reparti di terapia intensiva neonatale. Children’s Nurses - Italian Journal of Pediatric Nursing Sciences 2015; 7 (1): 6-8.
12. Lembo M et al. Evaluation of thermal comfort and carbon dioxide levels during ventricular-assist-device implant. Med Lav. 2017; 108 (5): 6324.
13. UNI EN ISO 9920:2009, Ergonomia dell’ambiente termico - Valutazione dell’isolamento termico e della resistenza evaporativa dell’abbigliamento
14. UNI EN ISO 8996 Ergonomia dell’ambiente termico Determinazione del metabolismo energetico.
15. Fanger PO. Thermal comfort – analysis and application in environmental engineering. Copenhagen: Danish Technical Press; 1970
16. UNI EN ISO 7730:2006, Ergonomia degli ambienti termici - Determinazione analitica e interpretazione del benessere termico mediante il calcolo degli indici PMV e PPD e dei criteri di benessere termico locale.
17. Roberge, R.J., Kim, J.-H., Coca, A. Protective facemask impact on human thermoregulation:an overview. Ann Occup Hyg 2012; 56: 102–112.
18. Setti L et al. Airborne Transmission Route of COVID-19: Why 2 Meters/6 Feet of Inter-Personal Distance Could Not Be Enough. Int J Environ Res Public Health 2020; 17(8): 2932.
19. Indicazioni sugli impianti di ventilazione/climatizzazione in strutture comunitarie non sanitarie e in ambienti domestici in relazione alla diffusione del virus SARS-CoV-2. Gruppo di Lavoro ISS Ambiente-Rifiuti COVID-19. Versione del 25 maggio 2020. Roma: Istituto Superiore di Sanità; 2020. (Rapporto ISS COVID-19, n. 33/2020).
20. Borro L, Mazzeo L, Raponi M et al. The Role of Air Conditioning in the Diffusion of Sars-CoV-2 in Indoor Environments: a First Computational Fluid Dynamic Model, based on Investigations performed at the Vatican State Childrens Hospital. Pre-print. doi: https://doi.org/10.1101/2020.08.25.20181420
21. Ong SWX, Tan YK, Chia PY, et al. Air, Surface environmental, and personal protective equipment contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA. 2020; 323(16): 1610-1612.
22. Wang J, Feng H, Zhang S, et al. SARS-CoV-2 RNA detection of hospital isolation wards hygiene monitoring during the Coronavirus Disease 2019 outbreak in a Chinese hospital. Int J Infect Dis 2020; 94: 103-106