Occupational electromagnetic spectrum hazards and the significance of artificial optical radiation: country report for Greece Risk assessment of the electromagnetic spectrum

Main Article Content

George A Gourzoulidis
Efthymios Karabetsos
Constantinos Bourousis
Charilaos Tyrakis
Andreas D Flouris
Thomas G Maris
Frangiskos V Topalis


Artificial Optical Radiation (AOR), laser safety, risk assessment, Electromagnetic Fields (EMF), Occupational Health & Safety (OHS)


Background: The electromagnetic spectrum spans over an enormous range from 0 up to more than 1020 Hz in the deep ionizing region, significant exposures exist in specific occupational environments. Between the ionizing and the electromagnetic fields (EMF) part of the spectrum, the ‘optical radiation’ (OR) region has specific properties. Comparative and concise evaluation enables action prioritization. Methods: Following the transposition and implementation periods of the artificial optical radiation (AOR) and EMF European Directives, the Hellenic Ministry of Labour in collaboration with the Greek Atomic Energy Commission (EEAE) and the National Technical University of Athens, conducted thorough occupational exposure investigation in Greece. Using dedicated measuring equipment and procedures, the majority of EMF emitting installations in Greece and also AOR emitting installations including arc welding, lasers and PC monitors has been assessed. Results: Measurement results from occupational settings reveal that it is the non-coherent metal arc welding AOR that can pose even sub-second overexposures. Rare EMF overexposures are manageable and EMF concern is not justified. Maintenance procedures demand proper attention. Preliminary laser safety assessment reveals OHS gaps and potential eye and skin hazards. Blue light exposure from computer monitors is well below safety limits. Conclusions: This electromagnetic spectrum risk assessment conducted in Greece enables the justification of the real occupational hazards, in this sense: i) EMF exposure assessment has to be concentrated to maintenance procedures; ii) AOR measuring setups are challenging and standardized measurement procedures are missing, and iii) AOR overexposures from arc welding pose significant eye and skin hazards.

Abstract 468 | PDF Downloads 291


1. Council Directive 89/391/EEC. OJ L183.
2. Directive 2006/25/EC. OJ L 114/38.
3. Directive 2013/35/EU. OJ L 179/1.
4. Council Directive 2013/59/EURATOM. OJ L L13/1.
5. Vecchia P, Hietanen M, Matthes R, et al. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010;99(6):818-36. Doi: 10.1097/HP.0b013e3181f06c86.
6. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys. 1998;74(4):494-522. Doi: 9525427.
7. European Commission. Non-binding guide to good practice for implementing Dir 2006/25/EC. Luxembourg: Publications Office of the European Union, 2011.
8. SCENIHR, Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on potential health effects of exposure to electromagnetic fields (EMF). Available online: http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_041.pdf (accessed on7-1-2021).
9. Gourzoulidis GA, Tsaprouni P, Skamnakis Ν, et al. Occupational exposure to electromagnetic fields. The situa-tion in Greece. Phys Med. 2018;49:83-9. Doi: 10.1016/j.ejmp.2018.05.011.
10. Flouris AD. Functional architecture of behavioural thermoregulation. Eur J Appl Physiol. 2011;111(1):1-8. Doi: 10.1007/s00421-010-1602-8.
11. Kenny GP, Flouris AD. Human thermoregulatory system. Protective clothing: managing thermal stress. Cam-bridge,UK: Woodhead Publishing Limited, Elservier, Sawston, 2014; 319-64. Doi: 10.1533/9781782420408.3.319.
12. Sienkiewicz Z, van Rongen E, Croft R, Ziegelberger G, Veyret B. A Closer Look at the Thresholds of Thermal Damage: Workshop Report by an ICNIRP Task Group. Health Phys. 2016;111(3):300-6. Doi: 10.1097/HP.0000000000000539.
13. Gourzoulidis GA, Kappas C and Karabetsos E. Development of a flowchart system for the risk assessment of occupational exposure to low and high frequency EMFs. HjR. 2019;4(1), 18-25.
14. Stam R. The revised electromagnetic fields directive and worker exposure in environments with high magnetic flux densities. Ann Occup Hyg. 2014;58(5):529-41. Doi: 10.1093/annhyg/meu010.
15. Gourzoulidis G, Karabetsos E, Skamnakis Ν, et al. Occupational Electromagnetic Fields exposure in Magnetic Resonance Imaging systems - Preliminary results for the RF harmonic content. Phys Med. 2015;31(7):757-62. Doi: 10.1016/j.ejmp.2015.03.006.
16. Karipidis K, Abramowicz J, d’Inzeo G, et al. Intended Human Exposure to Non-ionizing Radiation for Cosmetic Purposes. Health Phys. 2020;118(5):562-79. Doi: 10.1097/HP.0000000000001169.
17. Makropoulou M, SerafetinidesA, Hourdakis CJ et al. The need to identify occupational exposure to laser radia-tion in Greece. Phys Med: Eur J of Med Phys. 2016;32(S3), 320-1.
18. Okuno T. Measurement of Ultraviolet Radiation from Welding Arcs. Ind Health.1987;25, 147-56. Doi: 10.2486/indhealth.25.147. Doi: 10.2486/indhealth.25.147.
19. Nakashima H, Takahashi J, Fujii N, Okuno T. Blue-Light Hazard From Gas Metal Arc Welding of Aluminum Alloys. Ann Work Expo Health. 2017;61(8):965-74. Doi: 10.1093/annweh/wxx062.
20. Tenkate TD. Ocular ultraviolet radiation exposure of welders. Scand J Work Environ Health. 2017;43(3):287-8. Doi: 10.5271/sjweh.3630.
21. Heltoft KN, Slagor RM, Agner T, Bonde JP. Metal arc welding and the risk of skin cancer. Int Arch Occup Environ Health. 2017;90(8):873-81. Doi: 10.1007/s00420-017-1248-5.
22. Gourzoulidis GA, Achtipis A, Topalis FV, et al. Artificial Optical Radiation photobiological hazards in arc welding. Phys Med. 2016;32(8):981-6. Doi: 10.1016/j.ejmp.2016.07.001.
23. Miller SA, O’Hagan J, Okuno T, et al. Light-Emitting Diodes (LEDS): Implications for Safety. Health Phys. 2020;118(5):549-61. Doi: 10.1097/HP.0000000000001259.
24. Tosini G, Ferguson I, Tsubota K. Effects of blue light on the circadian system and eye physiology. Mol Vis. 2016;22:61-72.
25. CIE S 026/E:2018 CIE System for Metrology of Optical Radiation for ipRGC-Influenced Responses to Light, CIE Central Bureau, Vienna, Austria.
26. Gourzoulidis GA, Boursianis T, Maris TG, Sianoudis I, Achtipis A, Stasinopoulou P and Kappas C. A preliminary investigation on the occupational exposure to laser radiation in Greece. HjR. 2019;4(2), 1-10.
27. Niemz MH. Laser-Tissue Interactions: Fundamentals and Applications, 3rd Ed. Germany: Springer, 2004.
28. Sliney DH, Wolbarsht ML. Safety with lasers and other optical sources. New York: Plenum Publishing Corp., 1980. ISBN-13: 978-0306404344.
29. LIA, Laser Institute of America. Available online: https://www.lia.org (accessed on 7-9-2021).
30. Rockwell Laser Incident Database. Available online:http://www.rli.com/resources/accident.aspx (accessed on 7-9-2021).
31. Vasudevan L, Menchaca DI, Tutt J. Laser Safety Program Development at Texas A&M University--Issues and Challenges. Health Phys. 2015;109(3):205-11. Doi: 10.1097/HP.0000000000000328.
32. Patsiamanidi M, Zissimopoulos A, Constantinidis TC, Lambiris G. Health and safety using laser in eye de-partments. Scientific edition of Hellenic Society of Occupational and Environmental Medicine. 2015;6(3), 11-72.
33. van Rongen E, Croft R, Feychting M, et al. Principles for Non-Ionizing Radiation Protection. Health Phys. 2020;118(5):477-82. Doi: 10.1097/HP.0000000000001252.
34. Tyrakis CD, Gourzoulidis GA, Daskalou T, Kourmpetis N, Xanthis E and Kappas C. High frequency occupational electromagnetic field exposure assessment of field workers/climbers in mobile industry. PhysMed. 2018;52(S1), 122.
35. Basiouka M, Karabetsos E,Gourzoulidis GA et al. A personal monitoring study of occupational RF exposure to the medical equipment used in physiotherapy centers: Diathermy is the top emission device. HjR.2020;5(2), 2-11.
36. Oh JH, Yoo H, Park HK, Do YR. Analysis of circadian properties and healthy levels of blue light from smartphones at night. Sci Rep. 2015;5:11325. Doi: 10.1038/srep11325.
37. ISO 31000:2018. Risk management - Guidelines.
38. Sorrano Ch. ΙΕΕΕ Product Engineering Safety newsletter. 2017;13(4), 24-34.
39. Freudenstein F, Wiedemann PM, Brown TW. Exposure Perception as a Key Indicator of Risk Perception and Acceptance of Sources of Radio Frequency Electromagnetic Fields. J Environ Public Health. 2015;2015:198272. Doi: 10.1155/2015/198272.
40. Ito TA, Larsen JT, Smith NK, Cacioppo JT. Negative information weighs more heavily on the brain: the negativity bias in evaluative categorizations. J Pers Soc Psychol. 1998;75(4):887-900. Doi: 10.1037//0022-3514.75.4.887.
41. Kheifets L, Sahl JD, Shimkhada R, Repacholi MH. Developing policy in the face of scientific uncertainty: inter-preting 0.3 microT or 0.4 microT cutpoints from EMF epidemiologic studies. Risk Anal. 2005;25(4):927-35. Doi: 10.1111/j.1539-6924.2005.00635.x.
42. Baliatsas C, Van Kamp I, Lebret E, Rubin GJ. Idiopathic environmental intolerance attributed to electromagnetic fields (IEI-EMF): a systematic review of identifying criteria. BMC Public Health. 2012;12:643. Doi: 10.1186/1471-2458-12-643.
43. Cameron IL, Markov MS, Hardman WE. Optimization of a therapeutic electromagnetic field (EMF) to retard breast cancer tumor growth and vascularity. Cancer Cell Int. 2014;14(1):125. Doi: 10.1186/s12935-014-0125-5.
44. Croft R, Feychting M, Green AC, et al. Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020;118(5):483-524. Doi: 10.1097/HP.0000000000001210.
45. Tyrakis C, Gourzoulidis GA, Alexias A et al. A preliminary presentation of a national EMF exposure survey program concerning sensitive land use. BioEM, Slovenia.2018; PB-146.
46. Christopoulou M, Karabetsos E. Evaluation of Radiofrequency and Extremely Low-Frequency Field Levels at Children's Playground Sites in Greece From 2013 to 2018. Bioelectromagnetics. 2019;40(8):602-5. Doi: 10.1002/bem.22220.