Towards a toxic-free environment: perspectives for chemical risk assessment approaches Updated approaches to chemical risk assessment
Main Article Content
Keywords
Low-dose exposure, chemical mixtures, chemical risk assessment and management, regulatory frameworks, biological monitoring, endocrine disruptors, “omic” techniques; safe and sustainable by design, preventive personalized medicine; susceptibility
Abstract
Regulatory frameworks to control chemical exposure in general living and occupational environments have changed exposure scenarios towards a widely spread contamination at relatively low doses in developed countries. In such evolving context, some critical aspects should be considered to update risk assessment and management strategies. Risk assessment in low-dose chemical exposure scenarios should take advantage of: toxicological investigations on emerging substances of interest, like those recognised as endocrine disruptors or increasingly employed nanoscale materials; human biological monitoring studies aimed to identify innovative biomarkers for known chemical exposure; “omic” technologies useful to identify hazards of chemicals and their modes of action. For updated risk assessment models, suitable toxicological studies, analyses of dose-responses at low-concentrations, environmental and biological monitoring of exposure, together with exposome studies, and the proper definition of susceptible populations may all provide helpful contributions. These may guide defining preventive measures to control the exposure and develop safe and sustainable chemicals by design. Occupational medicine can offer know-how and instruments to understand and manage such evolution towards a toxic-free environment to protect the safety and health of the workforce and, in turn, that of the general population.
References
2. CEFIC Chemdata International. 2021. Available on line at: https://cefic.org/a-pillar-of-the-european-economy/facts-and-figures-of-the-european-chemical-industry/profile/. (last accessed on 23-12- 2021).
3. European commission. 2020. COMMUNICATION FROM THE COMMISSION TO THE EU-ROPEAN PARLIAMENT, THE COUNCIL, THE EUROPEAN ECONOMIC AND SOCIAL COM-MITTEE AND THE COMMITTEE OF THE REGIONS Chemicals Strategy for Sustainability Towards a Toxic-Free Environment. Available online at :https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52020DC0667&from=EN (last accessed 23-12-2021).
4. EU-OSHA, 2018. Legislative framework on dangerous substances in workplaces. Available on line at: https://osha.europa.eu/lv/publications/info-sheet-legislative-framework-dangerous-substances-workplaces. (last accessed 23-12-2021).
5. Lee DH, Jacobs DR Jr. New approaches to cope with possible harms of low-dose environmental chemicals. J Epidemiol Community Health. 2019;73(3):193-197. doi: 10.1136/jech-2018-210920. Epub 2019 Jan 11. PMID: 30635437; PMCID: PMC6580748.
6. Kortenkamp A. Low dose mixture effects of endocrine disrupters and their implications for regulatory thresholds in chemical risk assessment. Curr Opin Pharmacol. 2014 ;19:105-11. doi: 10.1016/j.coph.2014.08.006. Epub 2014 Sep 19. PMID: 25244397.
7. Louro H, Heinälä M, Bessems J, Buekers J, Vermeire T, Woutersen M, van Engelen J, Borges T, Rousselle C, Ougier E, Alvito P, Martins C, Assunção R, Silva MJ, Pronk A, Schaddelee-Scholten B, Del Carmen Gonzalez M, de Alba M, Castaño A, Viegas S, Humar-Juric T, Kononenko L, Lampen A, Vinggaard AM, Schoeters G, Kolossa-Gehring M, Santonen T. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int J Hyg Environ Health. 2019;222(5):727-737. doi: 10.1016/j.ijheh.2019.05.009. Epub 2019 Jun 5. PMID: 31176761.
8. Albertini R, Bird M, Doerrer N, Needham L, Robison S, Sheldon L, Zenick H. The use of biomoni-toring data in exposure and human health risk assessments. Environ Health Perspect. 2006 Nov;114(11):1755-62. doi: 10.1289/ehp.9056.
9. Jakubowski M, Trzcinka-Ochocka M. Biological monitoring of exposure: trends and key devel-opments. J Occup Health. 2005 ;47(1):22-48. doi: 10.1539/joh.47.22. PMID: 15703450.
10. Manno M, Viau C; in collaboration with, Cocker J, Colosio C, Lowry L, Mutti A, Nordberg M, Wang S. Biomonitoring for occupational health risk assessment (BOHRA). Toxicol Lett. 2010;192(1):3-16. doi: 10.1016/j.toxlet.2009.05.001. Epub 2009 May 13. PMID: 19446015.
11. Viegas S, Zare Jeddi M, Hopf NB, Bessems J, Palmen N, S Galea K, Jones K, Kujath P, Duca RC, Verhagen H, Santonen T, Pasanen-Kase R. Biomonitoring as an Underused Exposure Assessment Tool in Occupational Safety and Health Context-Challenges and Way Forward. Int J Environ Res Public Health. 2020;17(16):5884. doi: 10.3390/ijerph17165884. PMID: 32823696; PMCID: PMC7460384.
12. SCOEL/OPIN/2016-086 Chromium(VI) compounds. Opinion from the Scientific Committee on Occupational Exposure Limits. Available on line at: https://op.europa.eu/en/publication-detail/-/publication/bc28ab1d-c35f-11e6-a6db-01aa75ed71a1/language-en/format-PDF/source-search. (last accessed 23-12-2021).
13. Ray RR. Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol. 2016;9(2):55-65. doi: 10.1515/intox-2016-0007. Epub 2017 May 17. PMID: 28652847; PMCID: PMC5458105.
14. Verdonck J, Duca RC, Galea KS Iavicoli I, Poels K, Töreyin ZN, Vanoirbeek J, Godderis L. Systematic review of biomonitoring data on occupational exposure to hexavalent chromium. Int J Hyg Environ Health. 2021;236:113799. doi: 10.1016/j.ijheh.2021.113799. Epub 2021 Jul 22. PMID: 34303131.
15. Caglieri A, Goldoni M, Acampa O, Andreoli R, Vettori MV, Corradi M, Apostoli P, Mutti A. The effect of inhaled chromium on different exhaled breath condensate biomarkers among chrome-plating workers. Environ Health Perspect. 2006;114(4):542-6. Doi: 10.1289/ehp.8506. PMID: 16581543; PMCID: PMC1440778.
16. Goldoni M, Caglieri A, De Palma G, Acampa O, Gergelova P, Corradi M, Apostoli P, Mutti A. Chromium in exhaled breath condensate (EBC), erythrocytes, plasma and urine in the biomonitoring of chrome-plating workers exposed to soluble Cr(VI). J Environ Monit. 2010;12(2):442-7. Doi: 10.1039/b914673c. Epub 2009 Nov 17. PMID: 20145884.
17. Goldoni M, Caglieri A, Poli D, Vettori MV, Corradi M, Apostoli P, Mutti A. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers. Anal Chim Acta. 2006;562(2):229-235. Doi: 10.1016/j.aca.2006.01.065. PMID: 17047732; PMCID: PMC1615891.
18. Riccelli MG, Goldoni M, Andreoli R, Mozzoni P, Pinelli S, Alinovi R, Selis L, Mutti A, Corradi M. Biomarkers of exposure to stainless steel tungsten inert gas welding fumes and the effect of ex-posure on exhaled breath condensate. Toxicol Lett. 2018;292:108-114. Doi: 10.1016/j.toxlet.2018.04.032. Epub 2018 Apr 30. PMID: 29719222.
19. Goldoni M, Caglieri A, Corradi M, Poli D, Rusca M, Carbognani P, Mutti A. Chromium in ex-haled breath condensate and pulmonary tissue of non-small cell lung cancer patients. Int Arch Occup Environ Health. 2008;81(4):487-93. Doi: 10.1007/s00420-007-0242-8. Epub 2007 Aug 28. PMID: 17724608.
20. Mutti A, Corradi M, Goldoni M, Vettori MV, Bernard A, Apostoli P. Exhaled metallic elements and serum pneumoproteins in asymptomatic smokers and patients with COPD or asthma. Chest. 2006;129(5):1288-97. Doi: 10.1378/chest.129.5.1288. PMID: 16685021; PMCID: PMC1472634.
21. Christou A, Georgiadou EC, Zissimos AM, Christoforou IC, Christofi C, Neocleous D, Dalias P, Torrado SOCA, Argyraki A, Fotopoulos V. Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by reg-ulating nitro-oxidative and proline metabolism. Environ Pollut. 2020;267:115379. Doi: 10.1016/j.envpol.2020.115379. Epub 2020 Aug 20. PMID: 32841910.
22. Bae DS, Gennings C, Carter WH Jr, Yang RS, Campain JA. Toxicological interactions among arsenic, cadmium, chromium, and lead in human keratinocytes. Toxicol Sci. 2001;63(1):132-42. Doi: 10.1093/toxsci/63.1.132. PMID: 11509753.
23. Fréry N, Santonen T, Porras SP, Fucic A, Leso V, Bousoumah R, Duca RC, El Yamani M, Ko-lossa-Gehring M, Ndaw S, Viegas S, Iavicoli I. Biomonitoring of occupational exposure to phthalates: A systematic review. Int J Hyg Environ Health. 2020;229:113548. doi: 10.1016/j.ijheh.2020.113548. Epub 2020 Jul 11. PMID: 32659708.
24. Bousoumah R, Leso V, Iavicoli I, Huuskonen P, Viegas S, Porras SP, Santonen T, Frery N, Robert A, Ndaw S. Biomonitoring of occupational exposure to bisphenol A, bisphenol S and bisphenol F: A systematic review. Sci Total Environ. 2021;783:146905. doi: 10.1016/j.scitotenv.2021.146905. Epub 2021 Apr 5. PMID: 33865140.
25. Santonen T, Alimonti A, Bocca B, Duca RC, Galea KS, Godderis L, Göen T, Gomes B, Hanser O, Iavicoli I, Janasik B, Jones K, Kiilunen M, Koch HM, Leese E, Leso V, Louro H, Ndaw S, Porras SP, Robert A, Ruggieri F, Scheepers PTJ, Silva MJ, Viegas S, Wasowicz W, Castano A, Sepai O. Setting up a collaborative European human biological monitoring study on occupational exposure to hexavalent chromium. Environ Res. 2019;177:108583. doi: 10.1016/j.envres.2019.108583. Epub 2019 Jul 10. PMID: 31330491.
26. Galea KS, Porras SP, Viegas S, Bocca B, Bousoumah R, Duca RC, Godderis L, Iavicoli I, Janasik B, Jones K, Knudsen LE, Leese E, Leso V, Louro H, Ndaw S, Ruggieri F, Sepai O, Scheepers PTJ, Silva MJ, Wasowicz W, Santonen T. HBM4EU chromates study - Reflection and lessons learnt from de-signing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromium. Int J Hyg Environ Health. 2021;234:113725. doi: 10.1016/j.ijheh.2021.113725. Epub 2021 Mar 11. PMID: 33714856.
27. Zare Jeddi M, Virgolino A, Fantke P, Hopf NB, Galea KS, Remy S, Viegas S, Mustieles V, Fer-nandez MF, von Goetz N, Vicente JL, Slobodnik J, Rambaud L, Denys S, St-Amand A, Nakayama SF, Santonen T, Barouki R, Pasanen-Kase R, Mol HGJ, Vermeire T, Jones K, Silva MJ, Louro H, van der Voet H, Duca RC, Verhagen H, Canova C, van Klaveren J, Kolossa-Gehring M, Bessems J. A human biomonitoring (HBM) Global Registry Framework: Further advancement of HBM research following the FAIR principles. Int J Hyg Environ Health. 2021;238:113826. doi: 10.1016/j.ijheh.2021.113826. Epub 2021 Sep 25. PMID: 34583227.
28. Leso V, Fontana L, Mauriello MC, Iavicoli I. Occupational Risk Assessment of Engineered Na-nomaterials: Limits, Challenges and Opportunities. Current Nanoscience. 2017; 13: 55-78.
29. Schulte P, Leso V, Niang M, Iavicoli I. Biological monitoring of workers exposed to engineered nanomaterials. Toxicol Lett. 2018;298:112-124. doi: 10.1016/j.toxlet.2018.06.003. Epub 2018 Jun 18. PMID: 29920308; PMCID: PMC6239923.
30. Schulte PA, Leso V, Niang M, Iavicoli I. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological in-vestigations. Scand J Work Environ Health. 2019;45(3):217-238. doi: 10.5271/sjweh.3800. Epub 2019 Jan 17. PMID: 30653633; PMCID: PMC6494687.
31. Pelclova D, Barosova H, Kukutschova J, Zdimal V, Navratil T, Fenclova Z, Vlckova S, Schwarz J, Zikova N, Kacer P, Komarc M, Belacek J, Zakharov S. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO2 particles: a cross-sectional study. J Breath Res. 2015;9(3):036008. doi: 10.1088/1752-7155/9/3/036008. PMID: 26172946.
32. Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, Trotter J, Kinsley L, Greenoak G. Small amounts of zinc from zinc oxide particles in sunscreens applied out-doors are absorbed through human skin. Toxicol Sci. 2010;118(1):140-9. doi: 10.1093/toxsci/kfq243. Epub 2010 Aug 12. Erratum in: Toxicol Sci. 2011 ;120(2):530. PMID: 20705894.
33. Gulson B, Wong H, Korsch M, Gomez L, Casey P, McCall M, McCulloch M, Trotter J, Stauber J, Greenoak G. Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci Total Environ. 2012;420:313-8. doi: 10.1016/j.scitotenv.2011.12.046. Epub 2012 Feb 7. PMID: 22316633.
34. Marie-Desvergne C, Dubosson M, Touri L, Zimmermann E, Gaude-Môme M, Leclerc L, Du-rand C, Klerlein M, Molinari N, Vachier I, Chanez P, Mossuz VC. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate. J Breath Res. 2016;10(3):036006. doi: 10.1088/1752-7155/10/3/036006. PMID: 27409350.
35. Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Exploring urine biomarkers of early health effects for occupational exposure to titanium dioxide nanoparticles using metabolomics. Na-noscale. 2021;13(7):4122-4132. doi: 10.1039/d0nr08792k. PMID: 33570056.
36. Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Metabolomics screening of serum biomarkers for occupational exposure of titanium dioxide nanoparticles. Nanotoxicology. 2021;15(6):832-849. doi: 10.1080/17435390.2021.1921872. Epub 2021 May 7. PMID: 33961536.
37. Ursini CL, Fresegna AM, Ciervo A, Maiello R, Del Frate V, Folesani G, Galetti M, Poli D, Buresti G, Di Cristo L, Sabella S, Iavicoli S, Cavallo D. Occupational exposure to graphene and silica nanoparticles. Part II: pilot study to identify a panel of sensitive biomarkers of genotoxic, oxidative and inflammatory effects on suitable biological matrices. Nanotoxicology. 2021;15(2):223-237. doi: 10.1080/17435390.2020.1850903. Epub 2020 Dec 29. PMID: 33373530.
38. Iavicoli I, V. Leso, M. Manno, P.A. Schulte. Biomarkers of nanomaterial exposure and effect: current status. J Nanopart Res. 2014; 16:2302.
39. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of envi-ronmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev. 2005;14(8):1847-50. doi: 10.1158/1055-9965.EPI-05-0456. PMID: 16103423.
40. Huhn S, Escher BI, Krauss M, Scholz S, Hackermüller J, Altenburger R. Unravelling the chem-ical exposome in cohort studies: routes explored and steps to become comprehensive. Environ Sci Eur. 2021;33(1):17. doi: 10.1186/s12302-020-00444-0. Epub 2021 Feb 11. PMID: 33614387; PMCID: PMC7877320.
41. Vermeulen R, Schymanski EL, Barabási AL, Miller GW. The exposome and health: Where chemistry meets biology. Science. 2020;367(6476):392-396. doi: 10.1126/science.aay3164. PMID: 31974245; PMCID: PMC7227413.
42. Doherty BT, Koelmel JP, Lin EZ, Romano ME, Godri Pollitt KJ. Use of Exposomic Methods In-corporating Sensors in Environmental Epidemiology. Curr Environ Health Rep. 2021;8(1):34-41. Doi: 10.1007/s40572-021-00306-8. Epub 2021 Feb 10. PMID: 33569731.
43. Bocato MZ, Bianchi Ximenez JP, Hoffmann C, Barbosa F. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies. J Toxicol Environ Health B Crit Rev. 2019;22(5-6):131-156. doi: 10.1080/10937404.2019.1661588. Epub 2019 Sep 5. PMID: 31543064.
44. Edwards SW, Preston RJ. Systems biology and mode of action-based risk assessment. Toxicol Sci. 2008;106(2):312-8. doi: 10.1093/toxsci/kfn190. Epub 2008 Sep 12. PMID: 18791183.
45. McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res. 2010;705(3):172-83. doi: 10.1016/j.mrrev.2010.04.001. Epub 2010 Apr 9. PMID: 20382258; PMCID: PMC2928857.
46. DeBord DG, Burgoon L, Edwards SW, Haber LT, Kanitz MH, Kuempel E, Thomas RS, Yucesoy B. Systems Biology and Biomarkers of Early Effects for Occupational Exposure Limit Setting. J Occup Environ Hyg. 2015;12 Suppl 1:S41-54. doi: 10.1080/15459624.2015.1060324. PMID: 26132979; PMCID: PMC4654673.
47. Schulte PA, Hauser JE. The use of biomarkers in occupational health research, practice, and policy. Toxicol Lett. 2012;213(1):91-9. doi: 10.1016/j.toxlet.2011.03.027. Epub 2011 Apr 6. PMID: 21477643.
48. Hernández-Mesa M, Le Bizec B, Dervilly G. Metabolomics in chemical risk analysis - A review. Anal Chim Acta. 2021;1154:338298. doi: 10.1016/j.aca.2021.338298. Epub 2021 Feb 17. PMID: 33736812.
49. Corradi M, Goldoni M, Mutti A. A review on airway biomarkers: exposure, effect and suscep-tibility. Expert Rev Respir Med. 2015;9(2):205-20. Doi: 10.1586/17476348.2015.1001373. Epub 2015 Jan 6. PMID: 25561087.
50. Vlaanderen J, Moore LE, Smith MT, Lan Q, Zhang L, Skibola CF, Rothman N, Vermeulen R. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occup Environ Med. 2010;67(2):136-43. doi: 10.1136/oem.2008.042788. Epub 2009 Nov 20. PMID: 19933307; PMCID: PMC2910417.
51. Smith MT, Vermeulen R, Li G, Zhang L, Lan Q, Hubbard AE, Forrest MS, McHale C, Zhao X, Gunn L, Shen M, Rappaport SM, Yin S, Chanock S, Rothman N. Use of 'Omic' technologies to study humans exposed to benzene. Chem Biol Interact. 2005;153-154:123-7. doi: 10.1016/j.cbi.2005.03.017. Epub 2005 Apr 19. PMID: 15935808.
52. Zhai R, Su S, Lu X, Liao R, Ge X, He M, Huang Y, Mai S, Lu X, Christiani D. Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential bi-omarkers. Biometals. 2005;18(6):603-13. doi: 10.1007/s10534-005-3001-x. PMID: 16388400.
53. Lan Q, Zhang L, Li G, Vermeulen R, Weinberg RS, Dosemeci M, Rappaport SM, Shen M, Alter BP, Wu Y, Kopp W, Waidyanatha S, Rabkin C, Guo W, Chanock S, Hayes RB, Linet M, Kim S, Yin S, Rothman N, Smith MT. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004;306(5702):1774-6. doi: 10.1126/science.1102443. PMID: 15576619; PMCID: PMC1256034.
54. Lan Q, Zhang L, Shen M, Jo WJ, Vermeulen R, Li G, Vulpe C, Lim S, Ren X, Rappaport SM, Berndt SI, Yeager M, Yuenger J, Hayes RB, Linet M, Yin S, Chanock S, Smith MT, Rothman N. Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity. Carcinogenesis. 2009; 30(1):50-8. doi: 10.1093/carcin/bgn249. Epub 2008 Oct 31. PMID: 18978339; PMCID: PMC2639030.
55. Shen M, Lan Q, Zhang L, Chanock S, Li G, Vermeulen R, Rappaport SM, Guo W, Hayes RB, Linet M, Yin S, Yeager M, Welch R, Forrest MS, Rothman N, Smith MT. Polymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hema-totoxicity. Carcinogenesis. 2006;27(10):2083-9. doi: 10.1093/carcin/bgl061. Epub 2006 May 25. PMID: 16728435.
56. Joo WA, Sul D, Lee DY, Lee E, Kim CW. Proteomic analysis of plasma proteins of workers ex-posed to benzene. Mutat Res. 2004;558(1-2):35-44. doi: 10.1016/j.mrgentox.2003.10.015. PMID: 15036117.
57. Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. 2003;111(11):1429-38. doi: 10.1289/ehp.6396. PMID: 12928151; PMCID: PMC1241636.
58. Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, Das S, Ghosh N, Chatterjee D. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci. 2006 ;89(2):431-7. doi: 10.1093/toxsci/kfj030. Epub 2005 Oct 26. PMID: 16251483.
59. Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: A systematic literature review. Mutat Res Rev. 2016;768:27-45. doi: 10.1016/j.mrrev.2016.03.004. Epub 2016 Mar 31. PMID: 27234561; PMCID: PMC4884606.
60. Leso V, Macrini MC, Russo F, Iavicoli I. Formaldehyde Exposure and Epigenetic Effects: A Systematic Review. Appl. Sci. 2020, 10, 2319.
61. Buesen R, Chorley BN, da Silva Lima B, Daston G, Deferme L, Ebbels T, Gant TW, Goetz A, Greally J, Gribaldo L, Hackermüller J, Hubesch B, Jennen D, Johnson K, Kanno J, Kauffmann HM, Laffont M, McMullen P, Meehan R, Pemberton M, Perdichizzi S, Piersma AH, Sauer UG, Schmidt K, Seitz H, Sumida K, Tollefsen KE, Tong W, Tralau T, van Ravenzwaay B, Weber RJM, Worth A, Yauk C, Poole A. Applying ‘omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regul Toxicol Pharmacol. 2017;91 Suppl 1:S3-S13. doi: 10.1016/j.yrtph.2017.09.002. Epub 2017 Sep 25. PMID: 28958911; PMCID: PMC6816021.
62. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, Benzene, Lyon (FR): International Agency for Research on Cancer; 2018.
63. Darral KG, Figgins JA, Brown RD, Philips GF Determination of benzene and associated volatile compounds in mainstream cigarette smoke, Analyst. 1998 ;123(5):1095-101. doi: 10.1039/a708664d.
64. Fustinoni S, Consonni D, Campo L, Buratti M, Colombi A, Pesatori AC, Bonzini M, Bertazzi PA, Foà V, Garte S, Farmer PB, Levy LS, Pala M, Valerio F, Fontana V, Desideri A, Merlo DF Monitoring low benzene exposure: comparative evaluation of urinary biomarkers, influence of cigarette smoking, and genetic polymorphisms. Cancer Epidemiol Biomarkers Prev. 2005;14(9):2237-44. doi: 10.1158/1055-9965.EPI-04-0798.PMID: 16172237
65. Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D, Byun HM, Jiang J, Marinelli B, Pesatori AC, Bertazzi PA, Yang AS. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007;67(3):876-80. doi: 10.1158/0008-5472.CAN-06-2995. PMID: 17283117.
66. Chambost H, Brasseur F, Coulie P, de Plaen E, Stoppa AM, Baume D, Mannoni P, Boon T, Maraninchi D, Olive D. Share A tumour-associated antigen expression in human haematological ma-lignancies. Br J Haematol. 1993;84(3):524-6. doi: 10.1111/j.1365-2141.1993.tb03111.x.PMID: 8217804.
66. Bertazzi PA, Bollati V, Bonzini M. [Hazard identification and risk evaluation in the metal in-dustry: the epigenetic challenge] G Ital Med Lav Ergon. 2012 ;34(3):223-8.PMID: 23213793
68. Bonzini M, Tripodi A, Artoni A, Tarantini L, Marinelli B, Bertazzi PA, Apostoli P, Baccarelli A. Effects of inhalable particulate matter on blood coagulation. J Thromb Haemost. 2010r;8(4):662-8. doi: 10.1111/j.1538-7836.2009.03694.x. Epub 2009 Nov 17.PMID: 19922434
69. Cantone L, Angelici L, Bollati V, Bonzini M, Apostoli P, Tripodi A, Bertazzi PA, Baccarelli AA. Extracellular histones mediate the effects of metal-rich air particles on blood coagulation. Environ Res. 2014;132:76-82. doi: 10.1016/j.envres.2014.03.029. Epub 2014 Apr 16.
70. Calabrese EJ. Hormesis is central to toxicology, pharmacology and risk assessment. Hum Exp Toxicol. 2010;29(4):249-61.
71. Heys KA, Shore RF, Pereira MG, Jones KC, Martin FL. 2016. Risk assessment of environmental mixture effects. RSC Adv. 6:47844–47857.72. Altenburger R, Nendza M, Schüürmann G. Mixture tox-icity and its modeling by quantitative structure-activity relationships. Environ Toxicol Chem. 2003; 22(8):1900-15. doi: 10.1897/01-386. PMID: 12924589.
73. Altenburger R, Scholz S, Schmitt-Jansen M, Busch W, Escher BI. Mixture toxicity revisited from a toxicogenomic perspective. Environ Sci Technol. 2012; 46(5):2508-22. doi: 10.1021/es2038036. Epub 2012 Feb 27. PMID: 22283441.
74. Bopp S, Berggren E, Kienzler A, van der Linden S, Worth A. 2015. Scientific methodologies for the assessment of combined effects of chemicals – a survey and literature review. JRC Technical Re-port. EUR 27471 EN, 64 pp. Publications Office of the European Union, Luxembourg. https://doi.org/10.2788/093511.
75. Kim J, Kim S. State of the art in the application of QSAR techniques for predicting mixture toxicity in environmental risk assessment. SAR QSAR Environ Res. 2015;26(1):41-59. doi: 10.1080/1062936X.2014.984627. PMID: 25608956.
76. Popa ML, Albulescu R, Neagu M, Hinescu ME, Tanase C. Multiplex assay for multiomics ad-vances in personalized-precision medicine. J Immunoassay Immunochem. 2019;40(1):3-25. doi: 10.1080/15321819.2018.1562940. Epub 2019 Jan 11. PMID: 30632882.
77. Calabrese EJ, Baldwin LA. Toxicology rethinks its central belief. Nature. 2003;421(6924):691-2
78. Birnbaum LS. Environmental chemicals: evaluating low-dose effects. Environ Health Perspect. 2012;120(4):A143-4. doi: 10.1289/ehp.1205179. PMID: 22470049; PMCID: PMC3339483.
79. Ankley GT, Bennett RS, Erickson RJ, Hoff DJ, Hornung MW, Johnson RD, Mount DR, Nichols JW, Russom CL, Schmieder PK, Serrrano JA, Tietge JE, Villeneuve DL. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem. 2010;29(3):730-41. doi: 10.1002/etc.34. PMID: 20821501.
80. OECD. 2013. Guidance document on developing and assessing adverse outcome pathways. Series on testing and assessment no. 184. Environment, Health and Safety Division, Environment Directorate. Paris, France: Organisation for Economic Co-operation and Development.
81. OECD. 2018. Considerations for assessing the risks of combined exposure to multiple chemicals. Series on testing and assessment no. 296. Environment, Health and Safety Division, Environment Directorate. Paris, France: Organisation for Economic Co-operation and Development.
82. Ashauer R, O’Connor I, Escher BI. Toxic Mixtures in Time-The Sequence Makes the Poison. Environ Sci Technol. 2017;51(5):3084-3092. doi: 10.1021/acs.est.6b06163. Epub 2017 Feb 17. PMID: 28177231.
83. Bopp SK, Kienzler A, Richarz AN, van der Linden SC, Paini A, Parissis N, Worth AP. Regulatory as-sessment and risk management of chemical mixtures: challenges and ways forward. Crit Rev Toxicol. 2019; 49(2):174-89
84. Kleinekorte J, Fleitmann L, Bachmann M, Kätelhön A, Barbosa-Póvoa A, von der Assen N, Bardow A. Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annu Rev Chem Biomol Eng. 2020;11:203-233. doi: 10.1146/annurev-chembioeng-011520-075844. Epub 2020 Mar 27. PMID: 32216728.
85. SCHER, SCENIHR, SCCS. 2012. Toxicity and assessment of chemical mixtures. European Un-ion. doi:10.2772/21444.
86. European Commission. 2012. Communication from the commission to the council - the com-bination effects of chemicals. Chemical mixtures. Brussels, 31.5.2012, COM(2012) 252 final.
87. Niedzwiecki MM, Walker DI, Vermeulen R, Chadeau-Hyam M, Jones DP, Miller GW. The Exposome: Molecules to Populations. Annu Rev Pharmacol Toxicol. 2019;59:107-127. doi: 10.1146/annurev-pharmtox-010818-021315. Epub 2018 Aug 10. PMID: 30095351.
88. Andrianou XD, Makris KC. The framework of urban exposome: Application of the exposome concept in urban health studies. Sci Total Environ. 2018;636:963-967. doi: 10.1016/j.scitotenv.2018.04.329. Epub 2018 May 3. PMID: 29729514.
89. Escher BI, Hackermüller J, Polte T, Scholz S, Aigner A, Altenburger R, Böhme A, Bopp SK, Brack W, Busch W, Chadeau-Hyam M, Covaci A, Eisenträger A, Galligan JJ, Garcia-Reyero N, Hartung T, Hein M, Herberth G, Jahnke A, Kleinjans J, Klüver N, Krauss M, Lamoree M, Lehmann I, Luckenbach T, Miller GW, Müller A, Phillips DH, Reemtsma T, Rolle-Kampczyk U, Schüürmann G, Schwikowski B, Tan YM, Trump S, Walter-Rohde S, Wambaugh JF. From the exposome to mecha-nistic understanding of chemical-induced adverse effects. Environ Int. 2017;99:97-106. doi: 10.1016/j.envint.2016.11.029. Epub 2016 Dec 8. PMID: 27939949; PMCID: PMC6116522.
90. Lutz WK. Differences in individual susceptibility to toxic effects of chemicals determine the dose-response relationship and consequences of setting exposure standards. Toxicol Lett. 2002;126(3):155-8. Doi: 10.1016/s0378-4274(01)00458-1. PMID: 11814700.
91. Calabrese EJ. Origin of the linearity no threshold (LNT) dose-response concept. Arch Toxicol. 2013;87(9):1621-33. doi: 10.1007/s00204-013-1104-7. Epub 2013 Jul 26. PMID: 23887208.
92. Calabrese EJ. The threshold vs LNT showdown: Dose rate findings exposed flaws in the LNT model part 1. The Russell-Muller debate. Environ Res. 2017 Apr;154:435-451. doi: 10.1016/j.envres.2016.12.006. Epub 2017 Jan 18. PMID: 28109526.
93. Li L, Dingsheng L. Inter-Individual Variability and Non-linear Dose-Response Relationship in Assessing Human Health Impact From Chemicals in LCA: Addressing Uncertainties in Exposure and Toxicological Susceptibility. Frontiers in Sustainability. 2021; 2: 17. Doi: 10.3389/frsus.2021.648138.
94. Calabrese EJ. The linear No-Threshold (LNT) dose response model: A comprehensive assessment of its historical and scientific foundations. Chem Biol Interact. 2019 Mar 1;301:6-25. doi: 10.1016/j.cbi.2018.11.020. Epub 2019 Feb 11. PMID: 30763547.
95 Calabrese EJ. Ethical failings: The problematic history of cancer risk assessment. Environ Res. 2021;193:110582. doi: 10.1016/j.envres.2020.110582. Epub 2020 Dec 5. PMID: 33290793.
96. Turin TC, Okamura T, Afzal AR, Rumana N, Watanabe M, Higashiyama A, Nakao Y, Nakai M, Takegami M, Nishimura K, Kokubo Y, Okayama A, Miyamoto Y. Hypertension and lifetime risk of stroke. J Hypertens. 2016;34(1):116-22. Doi: 10.1097/HJH.0000000000000753. PMID: 26556566.
97. Buonacera A, Stancanelli B, Malatino L. Stroke and Hypertension: An Appraisal from Patho-physiology to Clinical Practice. Curr Vasc Pharmacol. 2019;17(1):72-84. doi: 10.2174/1570161115666171116151051. PMID: 29149815.
98. Koman PD, Singla V, Lam J, Woodruff TJ. Population susceptibility: A vital consideration in chemical risk evaluation under the Lautenberg Toxic Substances Control Act. PLoS Biol. 2019;17(8):e3000372. doi: 10.1371/journal.pbio.3000372. PMID: 31465433; PMCID: PMC6715167.
99. Bollati V, Ferrari L, Leso V, Iavicoli I. Personalised Medicine: implication and perspectives in the field of occupational health. Med Lav. 2020;111(6):425-444. doi: 10.23749/mdl.v111i6.10947. PMID: 33311418; PMCID: PMC7809984.