Mineral Contents and Fatty Acids Compositions of Fillets of Female and Male Pangas (Pangasıus Hypophthalmus, Sauvage 1878) Cultured in Turkey

Main Article Content

Engin Artar https://orcid.org/0000-0002-6504-6689
Mine Percin Olgunoglu https://orcid.org/0000-0003-3709-8235
İlkan Ali Olgunoglu https://orcid.org/0000-0001-6712-329X


Pangasius hypophthalmus, panga, mineral composition, fatty acid profile, proximate composition


Pangas (Pangasius hypophthalmus) is a food resource with great economical importance in Asian countries. This study provides baseline data on some macro and micro minerals and fatty acids composition in fillets of female and male Pangasius hypophthalmus cultured in Turkey. Among the minerals determined in both fillets samples, Na was found to be highest, followed by K, Mg and Ca. The order of average micro minerals concentrations was Fe>Zn>Cu>Mn in both fillet samples. In the research, statistically significant differences were not observed in all determined macro and micro minerals when compared to each other. The major fatty acids detected were C16:0, C18:0, C18:1(n-9) and C18:2 (n-6). The results revealed that fillets of male pangas are a better source of minerals, protein and fatty acids than fillets from female pangas.

Abstract 273 | PDF Downloads 372


1. Sarkar M R U, Khan S, Haque M M, Kham M N A, Chai J S. 2007. Pangasiid catfish Pangasius hypophthalmus farming in bangladesh: a rural survey in the Mymensigh Region. Journal of Marine Bioscience and Biotechnology 2(2):94-101.AOAC 1995. Method 960.52. “Association of official analytical chemists official methods of analysis” 16 th ed. Washington, DC.
2. Begum M, Akter T, Minar, M H. 2012. Analysis of the proximate composition of domesticated stock of pangas (Pangasianodon hypophthalmus) in Laboratory. Environ. Sci. & Natural Resources 5(1): 69-74.
3. Batool SS, Khan N, Atique U, Azmat H, Iqbal K J, Mughal D H, Ahmad M S, Batool S, Munawar S, Dogar S, Nawa M, Amjad S. 2018. Impact of Azomite Supplemented Diets on the Growth and Body Composition of Catfish (Pangasius hypophthalmus). Pakistan J. Zool. 13:08-12.
4. Guımarães C F M, Mársico E T, Monteiro M L G, Lemos M, Mano S B, Junior C A C. 2016. The chemical quality of frozen Vietnamese Pangasius hypophthalmus fillets. Food Sci Nutr 4(3):398–408. https://doi.org/10.1002/fsn3.302
5. Sokamte T A, Mbougueng P D, Mohammadou B A, Tatsadjieu N L, Sachindra N M. 2020. Proximal composition and fatty acid profile of fresh and smoked fillets of Pangasius hypophthalmus. Scientific African 9:1-9. https://doi.org/10.1016/j.sciaf.2020.e00534
6. Khana A, Guttormsen A, Roll K H. 2018. Production risk of pangas (Pangasius hypophthalmus) fish farming. Aquaculture Economics & Management 22(2):192-208. DOI: 10.1080/13657305.2017.1284941
7. Thi A N T, Noseda B, Samapundo S, Nguyen B L, Broekaert K, Rasschaert G, Heyndrick M, Devlieghere F. 2013. Microbial ecology of Vietnamese Tra fish (Pangasius hypophthalmus) fillets during processing. Int J Food Mic 167:144–152.
8. Islami S N E, Faisal M, Akter M, Reza M S, Kamal M. 2015. Comparative shelf life study of whole fish and fillets of cultured striped catfısh (Pangasianodon hypophthalmus) during ice storage condition. Research in Agriculture Livestock and Fisheries 2 (1): 177-183.
9. Varlık C, Erkan N, Özden Ö, Mol S, Baygar T. 2004. Aquaculture processing technology. University of Istanbul Publication No.:4465. Faculty of Fisheries. No:7-491P. in Turkish
10. Hosseini H, Mahmoudzadeh M, Rezaei M, Mahmoudzadeh L, Khaksar R, Khosroshahi N K, Babakhani A. 2014. Effect of different cooking methods on minerals, vitamins and nutritional quality indices of kutum roach (Rutilus frisii kutum). Food Chem 148:86–91. http://dx.doi.org/10.1016/j.foodchem.2013.10.012
11. Bhattacharya P T, Mısra SR, Hussain M. 2016. Nutritional aspects of essential trace elements in oral health and disease: An extensive review. Scientifica Article ID 5464373, 12 pages. http://dx.doi.org/10.1155/2016/5464373
12. Göçer M, Olgunoglu I A, Olgunoglu M P. 2018. Study on fatty acid profile and some major mineral contents of sea cucumber (Holothuria (platyperona) sanctori) from Mediterranean Sea (Turkey). Food Science and Quality Management 72:1-5.
13. Sousa C, Moutinho C, Vinha A F, Matos C. 2019. Trace minerals in human health: iron, zinc, copper, manganese and fluorine. Ijsrm. Human 13 (3): 57-80.
14. Olgunoglu I A, Olgunoglu M P. 2017. Major mineral (P, K, Ca) contents and proximate compositions of the male and female blue swimming crab (Portunus segnis Forskal, 1775) from Northeastern Mediterranean Sea, Mersin Bay, Turkey. Journal of Biology, Agriculture and Healthcare 7(14):50-54.
15. Cherif S, Frikha F, Gargouri Y, Miled N. 2008. Fatty acid composition of green crab (Carcinus mediterraneus) from the Tunisian mediterranean coasts. Food Chem. 111: 930–933.
16. Durmuş M. 2018. Fish oil for human health: omega-3 fatty acid profiles of marine seafood species. Food Sci Technol Campinas, Ahead of Print,1-8. https://doi.org/10.1590/fst.21318
17. Thammapat P, Ravıyan S. 2010. Siriamornpun, proximate and fatty acids composition of the muscles and viscera of asian catfish (Pangasius bocourti). Food Chem. 122:223–227. doi: 10.1016/j.foodchem.2010.02.065.
18. AOAC 1995. Method 960.52. “Association of official analytical chemists official methods of analysis” 16 th ed. Washington, DC.
19. Bligh E C, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:913-917.
20. AOAC 2000. Official methods of analysis of the AOAC (18th ed.). Washington, DC: Author.
21. IUPAC 1979. Standard methods for analysis of oils, fats and Derivatives, 6th Edition (Fifth Edition Method II.D.19), Pergamon Press, Oxford, 96-102.
22. Garaffo M A, Vassallo A R, Nengas Y, Lembo E, Rando R, Maisano R, Dugo G, Giuffrid D. 2011. Fatty acids profile, atherogenic (IA) and thrombogenic (IT) health lipid indices, of raw roe of blue fin tuna (Thunnus thynnus L.) and their salted product “Bottarga”. Food Sci Nutr 2:736-743.
23. Lopes L D, Böger B, Cavalli K F, José F D S, Silveira J, Osório D V C L, Oliveira D F, Luchetta, Tonıal I.B. 2014. Fatty acid profile, quality lipid index and bioactive compounds of flour from grape residues. Ciencia e Investigación Agraria 41(2):225-234. DOI: 10.4067/S0718-16202014000200009
24. Kunnath S, Lekshmı M, Kannuchamy N, Gudipati V. 2015. Proximate and fatty acid compositions of different body portions in cultured Pangasianodon hypophthalmus (Sauvage, 1878). Indian J. Fish. 62(4): 52-155.
25. Juszczak L P, Szymczak K K. 2009. Fatty acid profiles and fat contents of commercially important fish from Vistula Lagoon. Pol J Food Nutr Sci 59(3), 225-229.
26. Orban E, Nevıgato T, Lena G D, Masci M, Casini I, Gambelli L, Caproni, R. 2008. New trends in the seafood market. Sutchi catfish (Pangasius hypophthalmus) fillets from Vietnam: Nutritional quality and safety aspects. Food Chem. 110:383–389. doi: 10.1016/j.foodchem.2008.02.014
27. Cenzano M R, Beser U, Cervera M L, Guardia, M. 2013. Fast determinationof fish mineralprofile. Application to Vietnamese panga fish. Ecotoxicol Environ. Saf. 95:195–201.
28. FAO/WHO 2001. Human vitamin and mineral requirements report of a joint FAO/WHO expert consultation Bangkok, Thailand Food and Agriculture Organization of the United Nations, Food Sci. Nut.r Division FAO Rome, p. 281
29. Ho B T, Paul D R. 2009. Fatty acid profle of tra catfsh (Pangasius hypophthalmus) compared to atlantic salmon (Salmo solar) and asian seabass (Lates calcarifer). Int Food Res J 16:501–506.
30. Karl M M, Lehmann T, Ostermeyer U, Schröder U. 2016. Natural chemical composition of commercial fish species: characterisation of Pangasius, Wild and Farmed Turbot and Barramundi. Foods 5: 1–14, doi: 10.3390/foods5030058.
31. Sokamte T A, Mbougueng P D, Mohammadou B A, Tatsadjıeu N L, Sachindra N M. 2020. Proximal composition and fatty acid profile of fresh and smoked fillets of Pangasius hypophthalmus. Scientific African 9:1-9. https://doi.org/10.1016/j.sciaf.2020.e00534
32. Dagtekin, G B B, Balcık M G, Kutlu S, Bastürk O. 2018. Comparison of biochemical, fatty acids andl quality indexes of prussian carp (Carassius gibelio) caught from Lake Çıldır on different seasons. MedFAR 1(1):2-14.
33. Khosroshahi N K, Hosseini, H, Rezaei, M, Khaksar R, Mahmoudzadeh M. 2016. Effect of different cooking methods on minerals, vitamins, and nutritional quality indices of rainbow trout (Oncorhynchus mykiss). International Journal of Food Properties. 19:2471–2480. https://doi.org/10.1080/10942912.2015.1039028
34. Woloszyn J, Haraf G, Okruszek A, Werenska M, Goluch Z, Teleszko M. 2020. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poultry Sci. 99:1216–1224. https://doi.org/10.1016/j.psj.2019.10.026.
35. Gualda L P, Jorge Dos Santos V, Figueiredo I De L, Petenuci M E, Visentainer J V. 2018. Centesimal composition, fatty acids profile and the nutritional quality index of four seafood species from the southern region of Brazil. Acta Scientiarum, vol. 40. https://doi.org/10.4025/actascitechnol.v40i1.39351